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Atiyah’s Proof of the Convexity Theorem
John R. Calabrese

Abstract

Following A. Cannas da Silva’s book [ ] we give M. Atiyah’s proof
of the Atiyah-Guillemin-Sternberg theorem. In the first section we recall the
essential definitions and facts from differential geometry and in the second
section we state and prove the theorem.

1 Preparing for the Theorem

First let us introduce three of the main protagonists: riemannian metrics, symplectic
forms and almost complex structures.

DEFINITIONS
Let M be a smooth manifold.

« A Riemannian Metric is a smooth field g of positive definite scalar products:

gp: TyMxT,M >R VpeM.
o A Symplectic Form is a smooth field w of skew-symmetric bilinear maps:
wp: TyMxTyM >R VpeM,
such that w is closed as a 2-form (i.e. dw = o).
o An Almost Complex Structure is a smooth field ] of linear endomorphisms:
Jp: TyM - T,M Vpe Mau,
such that J; = —idr,um, for all p € M.

The couples (M, g), (M, w) and (M, ]) will be called riemannian, symplectic and
almost complex manifolds respectively.

If (M, w) is a symplectic manifold then an almost complex structure ] on M is
said to be compatible with w if (M, g), where g is defined by

TyM x ToM 3 (v,w) = gp(v,w) = w(v,J,w) e R VpeM,

is a riemannian manifold. In this case we speak of compatible triples (M, w, ], g).

'It might be more satisfactory to view these three objects as sections of appropriate vector bundles
over M, but this point of view is not of our concern here.
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Given a symplectic manifold it is always possible to find compatible almost
complex structures on it. In general these structures are not unique, but if we fix a
riemannian metric we have a ‘canonical’® choice (cfr. | ] p. 68).

1.1 Exps

Let us start with Lie groups. Let G be a Lie group. By a one-parameter subgroup of
G we mean a Lie group homomorphism from R to G. We recall that one-parameter
subgroups of G and the tangent space T,G of G to the identity are in one-to-one
correspondence. This correspondence is given by (cfr. [ ] chap. 3):

Hompi(R,G) > 9~ 4 9(t) € T.G.
dt o

DEFINITION
Let G be a Lie group. We define the Lie group exponential map to be:

T.G>X - expX=9(1) G
where 9 is the one-parameter subgroup of G corresponding to X.

We shall use the following results.

PROPOSITION
The exponential map is smooth and natural, i.e.:

Te¢
T.G —— T, G’
exp exp
G—— G

where ¢ € Homyp; (G, G") is a Lie group homomorphism. Moreover if X € T,G is
a tangent vector at the identity of G then exp(t + s)X = (exp tX) - (expsX) for all
t,s € R, where - indicates the Lie group product of G.

We now turn to riemannian manifolds. Here we have an analogous exponential
map (cfr. [ 1 p. 72-78, 89).
DEFINITION

Let (M, g) be a riemannian manifold and let p € M be a point of M. The riemannian
exponential map starting at p is defined by:

TyM> X mexp, X =yx(1) e M

where yx is the unique geodesic starting at p with tangent vector X.

2Throughout this article we will use the terms natural and canonical informally, since we won’t
have any opportunity of dealing with categorial issues.



We recall the following facts.
1.5 PROPOSITION
The exponential map is smooth and natural:

Tp¢
TPM E— TPIM,

exp, exp,

M——M

where ¢ is an isometry (i.e. ¢* g' = g). Moreover if X € T,M is a tangent vector in p
then exp, tX = yx(t) for t e R

Another important result is the existence of normal coordinates.

1.6 PROPOSITION
There exist U and V open neighborhoods respectively of o € TyM and p € M such that
exp, : U — V is a diffeomorphism. Furthermore if we fix an orthonormal basis of
T, M we obtain an isomorphism F with R" which in turn can be combined with exp '
to give a coordinate chart (V,F o expl_)l) which is called a normal coordinate chart.
Finally, if (V, (x;)) is a normal coordinate chart on (M, g) and if X = ; X;0; € T,M
then the local coordinate expression of exp,, is given by

exp, tX = (1Xy,..., 1Xn).

1.7 PROPOSITION
Let G be a Lie group equipped with a bi-invariant riemannian metric. Then the Lie
group exponential map is precisely the riemannian exponential map starting at the
identity.

1.2 Morse-Bott Theory

What follows is just a glimpse of Morse-Bott theory, which plays an essential role in
Atiyah’s proof of the convexity theorem ([ 1, p- 177-179).

Let f € €°° (M) be a smooth real-valued function on a riemannian manifold M.
We write S,(f) : T,M — T, M to indicate the linear map obtained from the hessian
of f via the riemannian metric, for all p € M.

1.8 DEFINITIONS
Let M be a compact connected riemannian manifold. A smooth function f € € (M)
on M is a Morse-Bott function if Crit f decomposes into a finite disjoint union of con-
nected submanifolds* of M (called critical submanifolds) and T, Crit f = ker S,(f)
for all p € Crit f.

*To be honest we’ve just cheated in this last statement because exp ¢X isn’t always defined for all
teR.
“By submanifold we mean a closed embedded submanifold
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If f is Morse-Bott then

where E; are the negative and positive (relatively to the hessian) subspaces of TpM.
The index of a critical submanifold C is n” (C) = dimg E,,, where p € C is any
point of C. Similarly the coindex of a critical submaifold is n* (C) = dimg E,.

We have the following the result.

LEMMA

Let f : M — R be a Morse-Bott function on a compact riemannian manifold whose
critical submanifolds have all index and coindex different from one. Then the level sets
of f are connected.

2 'The Convexity Theorem

Before we can even state the theorem we need some definitions.

DEFINITIONS
Let ¢ : (M, w) - (M', w") be a smooth function between two symplectic manifolds.
We say that ¢ is a symplectomorphism if it is a diffeomorphism and if §* v’ = w.

A symplectic action y of a Lie group G over a symplectic manifold (M, w) is a
smooth action y : G - Sympl(M, w) < Diff(M).

We now want to define what a hamiltonian action is. Before we can do that we
must clear some notation out.

If G is a Lie group we write g to indicate the Lie algebra of left-invariant vector
fields, which is canonically isomorphic to T, G. If X € g is a left-invariant vector field
(or equivalently a tangent vector at e) we may consider the one-parameter subgroup
of G

{exth‘te]R}.

Ify : G - Sympl(M, w) is a symplectic action we may compose y with exp tX
to obtain Yexp x> a smooth one-parameter subgroup of symplectomorphisms. By
differentiation we finally get

X? d

P = a l//exth(p) € TpM

o

which is a vector field on M, associated to X.

DEFINITION
A symplectic action y : G — Sympl(M, w) is called hamiltonian if there exist a
smooth map y : M — g* (called the moment map) such that:
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o If X € g is a left-invariant vector field on G and if we call u* the component of
y along X, i.e. the map given by:

w*(p) = (u(p). X) = u(p)(X),

we have
du” = ix:0 = w(X*,").

o The map y is equivariant with respect to y and to the coadjoint action of G, i.e.:
poyy=Adgou.
A remark is in order.

Remark If G is abelian then the coadjoint action is trivial, so the second request is
simply for u to be invariant under the action.

Remark Ifwe choose a basis of the tangent space T, G we have an isomorphism between
g and RY™C ~ (RYMCG)* Hence we might regard u: M — RY™S as a map into a
euclidean space.

2.1 The Convexity Theorem

In what follows we will be concerned with hamiltonian actions of the torus. We
choose coordinates (6;, ..., 0,,) on the m-torus (these coordinates are simply local

sections of the standard covering map R"™ = T™), and we will deliberately confuse
points of the torus with their coordinates. We also identify T, T with R™ by means
of the basis {dg,, ..., dy,, }

We can now finally state the theorem:

THEOREM (ATIYAH-GUILLEMIN-STERNBERG)

Let (M, w) be a compact connected symplectic manifold and let y : T™ — Sympl(M, w)
be a hamiltonian action of the m-torus T™ over (M, w) with moment map y : M —
R™. Then the level sets of the moment map are connected, the image of the moment
map is convex, in fact it is the convex hull of the image of the fixed points of the action.
In other words:

(1) p'(&) is connected, for all £ e R™,
(2) u(M) is convex,
(3) u(M) = Conv u(Fixy),
where, if A c R™, Conv A indicates the convex hull of A.

Proof
The proof will be divided into several steps.



Step1 There exists an almost complex structure J on M, compatible with w, invari-
ant under y, i.e.:

TowgoJp=Jy 0 Toyg VpeM,0eT".

To find such a J we start with any given riemannian metric g and average it
over the torus through y. This average is defined by:

g= me Yggdb.

It is easy to see that yy is an isometry, with respect to g, for all 0 ¢ T™.
Repeating the construction done in Cannas da Silva’s book [ ] starting
with g we obtain an almost complex structure J, compatible with w. It is
straightforward to check that ] commutes with y.

From this point forth we endow M with the compatible (with respect to w and
J) riemannian metric g(-,-) = w(-, J-). We point out that yy is an isometry for
all@eT™.

Step 2 For any subgroup G < T", the fixed-point set for G

FixG = () Fixyy
0eG

is a finite disjoint union of connected compact symplectic submanifolds of
(M, w).

Let p € Fix G. By the naturality of the geodesic exponential map we obtain the
following commutative diagram:

Tpye

exp,, exp,,

Vo
M——M

for every 6 € G. Choosing normal neighbourhoods ¢4,V of o € T,M and
p € M respectively yields this other diagram:

Tp¢

ul

exp,, exp,



where exp : U — V and exp : U' — V' are diffeomorphisms.

It is now a simple matter to verify that we have a correspondence

Un%@gngFMG,

where

Wp = m ker (idTpM _Tpll/9> ,
0eG

given by the exponential map. We now want to equip Fix G with a smooth
atlas. Let

{€n s€npsevnsenl
be an orthonormal basis of T, M, where ny = dim W, and the first n, vectors
span W),. This basis yields an isomorphism E : T,M — IR" which in turn gives
the diffeomorphism
¢p=Eoexp ':V —>EU).

Finally, it is easy to see that

Pr,, 06 = ... = pr, o = 0
is a slice for Fix G. Since the function
FixG> pr—npeZ
is a locally constant function, we obtain that the connected components of
Fix G are embedded connected submanifolds of M.

Considering the slice charts defined above we easily see that
TP FIX G = Wp.

Noticing that W, is invariant under the almost complex structure ] we con-
clude that W, is a symplectic subspace of T, M. Therefore Fix G is symplectic.

We now notice that Fixyy is a closed subset of M®, therefore FixG is an
intersection of closed sets and therefore himself a closed set. It’s worth noticing
that Fix G is also compact, being a closed subset of a compact space. Indeed
we can say that the components of Fix G are closed embedded submanifolds
of M. Since Fix G is a compact locally connected space it has finitely many
components® so we finally have that

FixG=C,u...uCy

where the Cjs (the components of Fix G) are compact connected embedded
symplectic submanifolds of M.

*This is a general fact: if f is a homeomorphism of a Hausdorff space X, then Fix f is closed in X.

°In general, if X is a locally connected space, the components of X are both open and closed. Fur-
thermore, if X is also compact, we may choose the open covering given by the connected components.
The compactness of X proves the claim that X has only finitely many components.



Step3 If X € R™ we have

Critu™ = () Fixyy = Fix TX
feTX
where T% is the closure of the one-parameter subgroup generated by X in 7.

We start by considering the following chain of equivalent statements:

peCrity® <= (du*),=o0
= wp(X}.-)=0

#_
<=>Xp—o

dt

Wexp tX(p) = 0.

t=0
Now, if p € Crit 4* and if s € R is a point of the real line we have:

d

& s l//exth(p) = E’ro ll’exp(r+s)X(p)

E o VexpsX © VexptX (P)

= TpV/exp X © Tr=oVexp rX(p) [1]

N

d
= TpV/exst [EWexp rX(P)

= TyYespsx [ X} ]

= 0.

So the function:
Rst— I/Iexptx(p) eM

is the constant map with image p. Therefore, if 0 is an element of the one-
parameter subgroup generated by X, wg(p) = p. By continuity, p is fixed by
all elements of TX (i.e. p € Fix TY).

Now, if p Fix TX, it is straight forward to check that X3 = o and therefore that

p is a critical point for u*X (i.e. p € Crit u%).

Step4 If X € R™, u* is a Morse-Bott function with even-dimensional critical
submanifolds of even index and coindex.

We already now that Crit 4* has a nice decomposition into submanifolds. We
now want to shaw that:

T, Crit ‘uX = ﬂ ker (idTpM —Tplllg) =ker S,
fGeTX



where S, is the linear map obtained from the hessian of 4* via the riemannian
metric. We have already shown the first equality. Let’s consider now this
identity:

~t],S
(*) TpWexp tx =€ R
which we will hopefully prove someday. Through identity (*) we see that vec-
tors in the kernel of S, correspond to eigenvectors of eigenvalue 1 of TpVexp rx-

Since the positive and negative spaces of the hessian are invariant under the

almost complex structure we conclude that the critical submanifolds of y have
all even (therefore different from one) index and coindex.”

Step 5 The action v is called effective if the 1-forms dy,, . .., dy,,, obtained by the
corresponding moment map y = (g, . . ., fhm ), are linearly independent over
RR. If the action is not effective then it reduces to that of an (m — 1)-torus.

2.6 Remark Ify is effective then u* is non-constant, for all X € R™.

We now proceed by induction over the dimension of the torus. Let us consider
the following statements:

A, The level sets of a moment map of a hamiltonian action of the m-torus
T™ are connected.

B,,: The image of a moment map of a hamiltonian action of the m-torus 7™
is convex.

A We begin by proving A.

The statement A, is precisely Lemma 1.9 since y = ' is a Morse-Bott function
with indexes and coindexes different from one.

Let us assume now that Ay is true for k < m. We con now also assume that y
is effective.

Step 6 LetC be:
C = Crity = | Crity*.
X+#o
We want to show that:
C= |J Critg®.
oxXeZm

One inclusion is obvious. Let p be a critical point of y. There must be X ¢ R™
such that (du”), = 0. There must also be X’ € Z" such that (du*), = 0.*

Now we want to see that C is closed. Consider:

’I admit it, I haven’t proven anything. But neither does Ana.
®This should be a consequence of the fact that a closed one-parameter subgroup of the torus can (I
think) always be generated by a vector with integer components.



f
S"xM —R
pr,

M

where f(X, p) = u*(p), which is continuous. We notice that C = pr, of (o),
which is compact, hence closed in M.

Now, if X # o and 6 € TX, M \ Fixy is an open dense subset of M. Recalling
that Fix T¥ is a finite disjoint union of submanifolds we have that M \ TX is
also a dense open subset of M. Since we have

M~C=M~ |J Crity*
o+ XeZ™M

=M~ |J FixT*
oxXeZ™

= () M~FixT¥,
oxXeZ™m

we may affirm, by Baire’s category theorem, that M \ C is dense in M. Since
we already know that C is closed, we have that M \ C is an open dense subset
of M.

Now, using the inductive hypothesis, we should see that the regular values of
p are dense in y(M) and that the preimage of a regular value is connected.
Finally, using continuity and density, we should be able to see that the preimage
ofany £ € R™ is connected. Something like:

Step 7 The preimage of a regular value is connected.

p= "t s tim), &= (&, ..., &n) regular value for p.

This proves A, for every m € IN*.

Q= nﬁlﬂfl(fj)
j=1

w7 (8) = QN (Sm)
Q is connected by the induction hypothesis. If we show that

[/‘m:Q_’R

is Morse-Bott with index and coindex different from one we win, since by the
lemma we know that the level sets will be connected.
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B We now turn to B.
The statement B, is trivial because in R connectedness is equivalent to convex-
ity.
Let us assume now that By is true for k < m. Choose an injective matrix

A € 771 which can be regarded as an injective map between the tori 7"
and T™. We can consider the action:

T 5 0 —* yg = yag € Sympl(M, w)
which is a hamiltonian action with moment map

M3 pw ps(p)=ATu(p) e R

Let £ e R be a point in R™™" and let p, € p;' (&) a point in the level set of
& Then

peus (&) = ATu(p)=&=A"u(po) <= u(p)-u(po) ckerA’.

By A,,—, we have that the level sets of 14 are connected. Let p, € u;'(&) be
another point in the same level set and let p; be a path connecting p, to p,.
Since ker A" is 1-dimensional we have:

Conv{u(po), u(p1)} = {(1 =s)u(po) +spu(ps) ‘ s€ I}
S {#(Pt) | te I}
cu(M),

where I = [0, 1], is the unit interval.

Let now p, and p, be two points of M and let U; be an open neighborhood of
pi (for i = 0,1). It is always possible to find points pU" e U; (for i = 0,1) and
an injective matrix A € Z"*("=1) such that u(pY") — u(pY°) € ker AT. We
can also take the limit over all the open neighbourhoods of p, and p;:

lim pf]" =pi, 1i=0,1.
pi€U;eOp(M)

We now notice that (1+ t)u(pg°) + tu(p;*) liesin u(M) for all ¢ € I. Since
u is continuous we have:

lim 1+ )u(pg®) + tu(py") = (1+ u(po) + tu(py)

p,‘€Ui€OpM
i=0,1

and since y(M) is compact (and therefore closed in R™):

(1+ )u(po) + tu(pr) € u(M)

thus u(M) is convex.

11



Step 8 Finally we recall that Fix y is the finite union of connected symplectic sub-
manifolds Fi, ..., Fy and that y is constant on each F;: we denote #; = 4(C;),
for j=1,..., N. By convexity of (M) we have:

Conv{ny,....nn} c u(M).

To prove the other inclusion let £ ¢ Conv{#,,..., %y} be a point outside of
the convex hull of the image of the fixed points. Let X € R™ be a vector with
independent components over Q) such that

(£,X)>(n;,X) Vj=1,...,N.

We recall that, because the zeros of X* correspond to the fixed points of y, u*
achieves its maximum on Fix y. So we have:

(& X) >;1615<ﬂ(p),X>-

which in turn proves that & ¢ (M), hence the claim:

p(M) =Conv{#n,,...,nn}

the image of the moment map is the convex hull of the image of its fixed points.
This concludes the proof. ]
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