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ABSTRACT

A classical theorem by Beilinson, regarding the bounded derived cate-
gory of coherent sheaves on projective space, is proved. In the first chapter
we collect some results from homological algebra. In the second chap-
ter we apply these results in the context of Algebraic Geometry. In the
third chapter we finally come to the main theorems. We prove three
equivalences of D (CohP™) with other, somewhat simpler, triangulated
categories, introducing on the way the concept of tilting sheaves.

We suggest the reader to start with CHAPTER III, and use the first two
chapters as a reference.
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Here we give an introduction to triangulated and derived categories
very much in the spirit of the first chapter of [KS9o]. We omit some of the
proofs and refer to the literature. To get a hold of the ideas behind these
topics we suggest [Thoo1], a survey which draws inspiration both from
the topological and algebro-geometric point of view. For a truly extensive
treatment, much beyond the scope of this thesis, one may consult [KSo6].
Other references we keep in mind are [Huyo6] (especially for the purpose
of this thesis), the classic [Har66], [GMo3] and the last chapter of [Weig4].
We assume familiarity with abelian categories and with the language of
spectral sequences.

We deliberately disregard set-theoretical problems, in particular we
never distinguish between small and big categories. A way to overcome
these difficulties is to use arguments involving universes, as done for exam-
ple in [KSo6]. Quoting [GMo3]:

We will always assume, whenever necessary, that all required
hygiene regulations are obeyed.

I.1 AN IDEA

Let us sketch the idea behind derived categories. Consider the following
setting. Let A and BB be abelian categories and let

F:A-B

be a left exact functor. Suppose moreover that .4 has enough injectives.
One classically defines the right derived functors of F

R'F: A-> B

as follows. For each object X € A one picks an injective resolution I'(X)
of X, which is an exact sequence

0-X-1%X) > IN(X) > .
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Then R'F(X) is defined to be the i-th cohomology of the complex
F(I'(X)) i+ > 0> F(I°(X)) = F(I'(X)) - -~

Similarly one defines left derived functors. One proves that, up to iso-
morphism, the definition of the derived functor does not depend on the
resolutions we’ve chosen. Furthermore, to compute R'F(X) we could also
have chosen a resolution J', made up of F-acyclic objects (where acyclic
means that all higher derived functors vanish).

As any object X of A can be treated as a 0-complex, viz. a complex

50X >0 -

where X sits in degree zero, one notices that a resolution I' of X is nothing
but a quasi-isomorphism between X, regarded as a complex, and a complex
I.

Thus what one does to define derived functors is simply to identify
an object X of A with a complex I', quasi-isomorphic to it and made up
of acyclic objects. What the derived category does is precisely this: it
identifies any two quasi-isomorphic complexes, thereby identifying any
object (seen as a 0-complex) with its resolutions.

There is also another reason to introduce derived categories. The func-
tors R'F are defined as the cohomology of some complex F(I'). When
taking cohomology we lose information encoded in the original complex
F(T'). Because of this, one wishes to redefine the derived functors. On the
level of derived categories one defines the (total) right derived functor RF
of F, which takes complexes in A and gives complexes in 3. The cohomol-
ogy objects of RF are the previously denifed classical derived functors R'F.
Hence, when using the derived functor RF, one ends up with complexes,
which retain more information than their cohomologies. One might say
(with thanks to E. Tonini and apologies to [Thoo1]) that derived categories
are constructed under the motto

Cohomology: good.
Complexes: way better.

Before giving precise statements we sketch the definition of the derived
category. One starts with a given abelian category A, from which the
category C(A) of complexes of A can be constructed. Let X', Y € C(.A)
be two complexes and let

s: X =Y

be a quasi-isomorphism. Although, by definition, s is an isomorphism on
cohomology, an inverse s~! needn’t exist. In order to identify X" and Y’
we put in by hand an inverse s™'. Namely, if S = Qis is the class of quasi-
isomorphisms, what we want is to Jocalize the category C(.A) with respect
to S: we are looking for the smallest category D(.A), containing C(.A), in
which all elements of S are invertible. There is a precise categorical notion
for the construction above. If C is category and S is a class of morphisms
then a localization of C by S is a category Cs together with a functor

Q:C—Cs

called the quotient functor, such that:
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o Foranys e S, Q(s) is an isomorphism in Cg;
o For any other category D and any other functor
F:C—D

such that F(s) is an isomorphism for any s € S, then F factors
uniquely through Q. In other words there exists a unique functor

Fs:Cs — D
such that F = Fs 0 Q.

Thus we define the derived category D(.A) to be the localization of C(.A)
with respect to Qis, the class of quasi-isomorphisms.
Let’s turn to derived functors. Suppose we are given a functor

F:A—B

between two abelian categories. There is an obvious extension of F to the
category of complexes:

C(F): C(A) — C(B)

which we still denote by F. Let us write Q for both the quotient functors
to the derived categories and consider

F'=QoF:C(A) — D(B).

If F is an exact functor then it commutes with homology and thus sends
quasi-isomorphisms into quasi-isomorphisms, namely: F(s) € Qis, for
any s € Qis. Therefore, for any s € Qis, F'(s) = QF(s) is an isomorphism.
Hence F’ admits a factorization, which we still denote by F,

F:D(A) — D(B),

viz. the following diagram can be completed to a commutative square.

C(A) —— C(B)

D(A) ------ , D(B)

Suppose now we are given a functor F, which is only left (or right) exact.
It is no longer true in general that F extends to the derived category as
before. The right and left derived functors are an approximation of this
desired extension. Their definition is of rather technical nature, but in
most cases of interest it is easy to compute (from a theoretical point of
view). One has in fact various results (the first of which is THEOREM 1.6.3)
which when applied to derived categories roughly amount to saying that:
given the existence of a big enough subcategory of F-acyclic objects, the
derived functor RF can be computed by resolving by acyclics and then

applying F.

Derived Functors
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Unfortunately the derived category of an abelian category is in general
not itself abelian. It is however additive and it posses some additional struc-
ture: that of a triangulated category. In order to recover this last structure
we break down the construction of the derived category into two steps.
First: from A we build C(.A), the category of complexes. Second: we
define K(.A) as the category whose objects are complexes of .4 and whose
morphisms are morphisms of complexes modulo homotopy. It turns out
that K(.A) is a triangulated category, which is what gives this same struc-
ture on the derived category. Finally we define D(.A) as the localization of
K(.A) with respect to quasi-isomorphisms. The two definitions of D(.A)
coincide (see [GMo3]).

1.2 ABELIAN AND TRIANGULATED CATEGORIES

Let’s start with a category A. We say that A is k-linear (for a fixed
commutative ring k) if every Hom-set is endowed with the structure of a
k-module such that composition o is bilinear. A k-linear functor between
two k-linear categories 4 and B is a functor F : A — B such that the
natural map

Hom 4(X,Y) — Homgp(FX, FY)

is k-linear for all objects X,Y € A. A full k-linear subcategory is a full
subcategory B such that the inclusion functor is k-linear.
A k-additive category is a k-linear category A with a zero object and

satisfying
Abl For any two objects X, Y € A there exists a third object (the sum of
Xand Y) X @ Y and four morphisms

X EXoY <Y

X xevy Xy

such that

(Il) PY lx = 0,
pxty =0,
pxix = Idx,
pyty = Idy,

xpx + lypy = ldxey -

One immediately notices the following.

I.21 LEMMA

Let A, X and Y be as above. Then the squares

P
XY ——Y 00— Y

oI

X—0 X—>sXaY
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are respectively cartesian and cocartesian. Therefore (X @Y, px, py) is the
product of X and Y and (X @ Y, 1x, ty ) is the coproduct of X and Y.

We take a moment to establish some notation. In an arbitrary category,
if f: W —>Xandg: W — Y are two morphisms, we denote by

fxg:(J;):W—>X><Y

the induced map from W to the product X x Y (assuming it exists). Dually,
ifth:X—>Zand k:Y — Z are two arrows, we denote by

huk=(hk):XuY—27

(and sometimes h @ k) the induced map from the coproduct (assuming
it exists) to Z. Given four objects Xj, X; and Y;, Y, and four morphisms
fij : Xi = Y, there are two ways to obtain a map X; 1 X; — Y; x Y,. The
first is

fl = (fux fiz) u (fu x f2)

and the second is

2= (fut fu) x (fo 1 fr2).

Thanks to the universal properties of products and coproducts, the two
coincide and we often employ the notation

1_p_[ fu fu
f=f ( fo fo ) '

From now on we drop the prefix k- and speak of linear (or pre-additive)
and additive (and later abelian) categories. It is useful to observe that if A
is additive then the opposite category .A° is also additive. Also, if F is an
additive functor, then F(X @ Y) ~ FX @ FY.

A complex in A is a sequence of objects X' = (X") ez with maps, called
differentials, (d} : X" — X"*!),, between them, represented by

X e o Xn—l > X" o Xn+1 = e

such that the composition of any two consecutive maps is zero. A mor-
phism of complexes is a collection of maps (f" : X" - Y"),

.. Xn—l d;;il Xn dx Xn+1
[fn—l [f” [f"“
.. Yn—l d";_l Y" a4 Yn+1

such that
ay " = iy

for all n € Z. Thus complexes form a category C(.A), and it is easy to check
that it is additive. For example, if X', Y are two complexes then their sum

Products and
Coproducts

Complexes
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is given by the complex (X" ®Y"),,, with differentials (d} ®d?}),. We may
also consider the full additive subcategories C*(A), where * = ub, +, —, b:

ObC"(A) = C(A) (unbounded complexes) ,
ObC*(A) = {X'|X" =0 for n < 0} (bounded below),
ObC (A) = {X'|X" =0for n> 0} (bounded above),

ObCP(A) = {X'|X" = 0for |n] > 0} (bounded).

We often omit to write Ob, simply using X € .4 to mean that X is an object
of the category A. If F : A — B is additive, there is an obvious extension
of F to an additive functor C*(F) : C*(A) » C*(B), for * = ub,+,—, b,
which we sometimes denote simply by F.

A morphism of complexes f is null homotopic if there exists a collection
of maps (s" : X" - Y" ™),

dy! di

anl X" Xn+1

such that
dg—lsn +5n+1d>ré :fn

for all n € Z. Two morphisms f, g are homotopic, and we write f ~ g,
if f — g is null homotopic. We denote by Ht(X', Y") the submodule of
Hom(X', Y') consisting of null homotopic maps. Homotopy is compatible
with composition, in the sense that if f ~ f" and g ~ g’ then gf ~ g'f’
(when composition makes sense). Thus we may form the category K(.A),
along with the subcategories K* (A), as follows.

ObK(A) = ObC(A)
Homc(A) (X', Y')

HomK(A) (X', Y') = Ht(X' Y')

The categories K*(\A) are also additive. We say that two complexes X and
Y are homotopy equivalent if they are isomorphic in K, viz. there exist
two morphismsin C, f : X' - Y and g: Y — X, such that gf ~ Idx
and fg ~ Idy.. One also notices that if F : 4 — B is additive and f is
null homotopic, then F( f) is null homotopic. Therefore, the extensions
C*(F) pass on to the homotopy category yielding functors K*(F), for
* = ub, +, —, b, which again we sometimes denote simply by F. , then if f
is null homotopic

Let k € Z be an integer, we define the shift by k of a complex X as the
complex

(X-[k]n _ Xk+n)n,
with differential

(d§pg = (D )
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We can also shift morphisms with the rule: (f[k]" = f¥*"),.. Hence the
shift (also called translation) [k] is an additive automorphism of C*(A)
and passes on to K*(\A), for * = ub, +, —, b. We also notice that for any
two integers h, k € Z we have [h + k] = [h] o [k]. We sometimes use T
to denote the shift by one. We now pause our discussion of complexes to
introduce abelian categories.

Let now A be an additive category. We define the kernel Ker f of a
morphism f : X > Y to be the equalizer of the two parallel arrows

£,0:X=3Y.

Equivalently the kernel might be defined as an object K together with
a morphism K — X, satisfying the universal property visualized by the
following commutative diagram.

where the dashed arrow stands for exists unique. Dually one defines the
cokernel Coker f of f as the coequalizer of the two parallel arrows

£,0:X3Y.

Dually, the cokernel may be defined as a kernel in the opposite category,
thus satisfying the universal property expressed by the opposite of the dia-
gram above. We notice that Ker f ~ Ker(-f) and Coker f ~ Coker(-f),
for all morphisms f. As a consequence of the definitions the map Ker f —
X is a monomorphism and Y — Coker f is an epimorphism. We then
define the image Im f of f as Ker(Y - Coker f) and the coimage Coim f
of f as Coker(Ker f — X). There is a natural map (when the objects
involved exist)

Ker f < X d Y Coker f
Coim f ------ > Im f

constructed as follows. The morphism X — Y — Coker f is zero, hence
it must factor through Im f. In turn the map Ker f — X — Im f is zero
so we obtain an arrow Coim f — Im f. Dually one obtains another arrow
Coim f — Im f by observing that Ker f — X — Y is zero. The two maps
coincide as a consequence of the universal properties satisfied by kernels
and cokernels.

We say that A is abelian if it satisfies

Abelian Categories
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Ab2 For any morphism f, the kernel and cokernel of f exist. Moreover
the natural map Coim f — Im f is an isomorphism.

We remark that if A is abelian then .A° is also abelian.

Let A be an abelian category. As a consequence of Ab2 we have that
a morphism f in 4 is: a monomorphism if and only Ker f = 0; it is an
epimorphism if and only if Coker f = 0; it is an isomorphism if and only
if Ker f = 0 = Coker f.

To define the cohomology of a complex the following lemma is useful.

L.2.2 LEMMA
Let f: X > Yand g:Y — Z be two morphisms.

o If g is a monomorphism then Ker gf ~ Ker f. Dually if f is an epi-
morphism then Coker gf ~ Coker g.

o If W = X is a monomorphism such that W — X — Y is zero, then
the induced map W — Ker f is also a monomorphism. Dually if
Y — Z is an epimorphism such that X — Y — Z is zero, then the
induced map Coker f - Z is also an epimorphism.

Given two consecutive morphisms f : X - Yand g : Y — Z such that
gf = 0 wesay that X - Y — Z is a complex and we identify it with the
sequence

50> X->Y>Z—->0—> -
where Y sits in degree zero, which is a complex in the sense of our earlier

definition.
Given a complex

X Y V4

we form the diagram

SN
N,

Coker Coim g

X zZ

N

Since gf is zero,Im f - Y — Z is zero and so Im f — Y factors through
Ker g, yielding the monomorphism ¢ : Im f < Ker g. Dually we obtain a
factorization of Y — Coim g through an epimorphism y : Y - Coim g.
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Ker g ——» Coker ¢

/\/
N

Ker y ——— Coker f Coim g

We want to show that Ker y ~ Coker ¢. First we notice that
Coker ¢ = Coker(Im f — Ker g) ~ Coker(X — Ker g)
and
Ker y = Ker(Coker f — Coim g) ~ Ker(Coker f - Z).

Let now u be the composition Kerg - Y — Coker f. Since Im f —
Y — Coker f is zero we obtain a morphism Im — Keru. And since

Keru — Coker f is zero we obtain another morphism Keru — Im f.

From the universal properties of kernels it follows that Im — Ker u — Im f
is the identity and also Keru — Im f — Keru is the identity. Thus we
have an isomorphism Ker # ~ Im f. Dually we obtain an isomorphism
Coim g ~ Coker u. Hence

(L2) Coker(X — Ker g) ~ Coker ¢
= Coker(Im f — Ker g)
=~ Coker(Keru — Ker g)
~ Coim u
~Imu
~ Ker(Coker f — Coker u)
=~ Ker(Coker f — Coim g)
= Kery
~ Ker(Coker f — Z).

I.2.3 DEFINITION

Let X - Y — Z be a complex as above.
o We define its cohomology
HX->Y->2Z)
to be one of the isomorphic objects in (1.2). For example
H(X - Y - Z) = Coker(Im f — Ker g)
to fix our ideas.
o We say that it is an exact sequence if its cohomology vanishes

HX->Y->Z)=0.

11
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Given a long complex
Xt o XL L X XL
we define its n-th cohomology H" (X") to be
H(X"! = X" - X",

and we say that X' is a long exact sequence or an acyclic complex if all its
coholomogies vanish, viz. H" (X') = 0, for all n € Z.

Notice that H"(X'[k]) = H"*¥(X"). We also notice that given complex
X - Y — Z, the cohomology of the opposite complex in the opposite
category is the opposite of the cohomology of the original complex, namely

H(Z° > Y° > X°)=(HX>Y~>2Z))".

A sequence 0 - X — Y is exact if and only if X — Y is a monomorphism;
asequence X - Y — 0 is exact if and only if X — Y is an epimorphism. A
complex

f g

0—-X—>Y—Z7Z—0

is exact if and only if f is a monomorphism, g is an epimorphism and
Ker g ~ Im f. In such cases we speak of short exact sequences. Any mor-
phism f : X - Y may be decomposed into short exact sequences.

0—Kerf - X — Coim f - 0
0—->Imf—Y - Coker f - 0.

An additive functor F : A — B between two abelian categories is:
o left exact if for any exact sequence
0-X->Y—>Z
the sequence
0—-FX—->FY—>FZ
is exact;
o right exact if for any exact sequence
X>Y->7Z-0
the sequence
FX->FY—>FZ—-0
is exact;

o exact if it is both left and right exact, or equivalently if for any exact
sequence

0-X->Y—>Z->0
the sequence
0-FX—->FY—>FZ-0

is exact.
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Remark Given an object X of a k-abelian category A, the functors

Hom4(X,-) : A - k-Mod
Hom4(-,X) : A° - k-Mod

are both left exact.

Our main example of an abelian category is R-Mod, the category of left
modules over a ring R with linear maps as arrows. Many of the proofs in
R-Mod often involve the chasing of elements in some diagram. In order
to be able to diagram chase in an arbitrary abelian category .A, one may
proceed in two ways. On one hand it is possible to define formal elements
in A, as done for example in [ML98, CHAPTER VIII], from which one
deduces some diagram chasing lemmas. On the other hand one can use
the Freyd-Mitchell embedding theorem which we now state (for a proof
see [KSo6, THEOREM 9.6.10]).

THEOREM (FREYD-MITCHELL)

Let A be a small'abelian category. There exist a ring R and an exact fully
faithful functor A - R-Mod.

A typical application of the theorem goes likes this: one starts from a finite
diagram in an abelian category, then one takes the full abelian subcategory
containing all objects involved in the diagram and uses the embedding
theorem to prove the desired result by diagram chase in R-Mod, finally
one pulls the result back to the original category. As a consequence one
has the five lemma and the snake lemma in any arbitrary abelian category.

THEOREM (FIVE LEMMA)
Consider a commutative diagram whose rows are complexes

XO X1 X2 X3
ﬁ[ ﬁ{ ﬁ[ ﬁ|
Yo Y: Y2 6

where Xog - X; = Xy and Yo = Y, - Y; are exact sequences. Then

o If fo is a epimorphism and fi, f3 are monomorphisms, then f, is a
monomorphism.

o If f5 is a monomorphism and fy, f, are epimorphisms, then fi is an
epimorphism.

The classical five lemma is consequence of the above theorem and of the
fact that in an abelian category an arrow that is both a monomorphism and
an epimorphism is an isomorphism. It asserts that given a commutative
diagram with exact rows

A small category is a category such that the collection of all arrows forms a set belonging
to some universe U, fixed beforehand.

13

The Embedding
Theorem
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XO X1 XZ X3 X4
fo { h { 1 { f3 { fa {
YO Y1 Y2 Y3 Y4

if fo, fi, f5 and f4 are isomorphisms then £, is an isomorphism also.

I.2.7 THEOREM (SNAKE LEMMA)
A commutative diagram with exact rows

x L x 0w 0

1

0 Y’ Y Y”

gives rise to an exact sequence

f Q ¢ h k
Ker u — Kerv —> Ker w —> Coker u —> Coker v —> Coker w.

Full Subcategories Let now J be a full subcategory of 4. We say that J is

o closed by subobjects (quotients) if for any monomorphism W < X

(epimorphism X - Z) with X € J then W € J (Z € J);

o closed by kernels (cokernels) if for any arrow X e Yin J we have

Ker f € J (Coker f € J);

o closed by extensions if for any short exact sequence 0 - X' - X —

X" > 0 with X/, X" € J then X € J;

o thick if it is closed under kernels, cokernels and extensions;

o generating (cogenerating) if any X € A is a quotient (subobject) of

an object of J;

o a fully abelian subcategory if it is abelian and the inclusion functor

is exact.

Long Exact Sequence Let us now return to complexes. Given an abelian category A the cate-
gory C(A) is also abelian and C°(.A) is thick in both C*(.A) and C(A),
which in turn are thick in C(.A). The abelian structure on C is given
component-wise. For example the kernel of a morphism f is given by the
complex (Ker f),, with differentials the natural maps among the kernels.

If X' is a complex the following is an exact sequence for all n € Z:

dy.
(13) 0 - H"(X') - Cokerdy' = Kerdi™ - H"(X) - 0.

If f: X — Y is amap of complexes there is an induced map
H™(f) : H"(X)) — H"(Y).

One can then define the functors H" : C(A) - A, for all n € Z.
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I.2.8 THEOREM
Any short exact sequence of complexes

0-X =Y -2 -0
gives rise to a long exact sequence
e > Hn—l(z-) N Hn(X) N HH(Y) N Hn(Z) N Hn+1(X») ...

which is natural, in the sense that given a commutative diagram with exact

rows
0 X Y VA 0
0 X" Y” 7" 0

the square below commutes, for all n € Z.

H"(Z) —— H™I(X)

|

Hn(Z") Hn+1(X/~)

Proof
From the exact sequence we obtain commutative diagrams with exact rows

Coker d§! ——— Cokerdy ! ——— Cokerd} ™ —— 0

L

0 — Kerd}" ———— Kerd}™ ———— Kerd}*!

Applying the snake lemma plus the exact sequence (I.3) we obtain the
desired long exact sequence. v

One can group all the cohomology functors H” together into a single
functor

H : C(A) - C(A)

where, given a complex X', H' (X") is the complex (H" (X") ), with the zero
maps for differentials. If f is null homotopic one notices that H' (f) = 0,
therefore the functor H' passes onto the homotopy category

H : K(A) — C(A).

Of course H' restricts to all the subcategories C*, K*, for * = +, —, b.

If we consider again a map f in C, we say that f is a quasi-isomorphism Quasi-isomorphisms
(qis for short) if H'(f) is an isomorphism, viz. H" (f) is an isomorphism
for all n € Z. The same definition goes for morphisms in K.
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We’ve already remarked that if we start from an abelian category A, the
categories C*(\A) are abelian. Unfortunately the categories K*(.A) are
in general not abelian. They do have some structure though: they are an
example of triangulated categories. To illustrate this structure we must
introduce the mapping cone.

Fix again an additive category A.

1.2.9 DEFINITION

Let

f:X —Y
be a morphism of complexes. The mapping cone of f is the complex Mc(f)
defined as Mc(f) = X'[1] @ Y with differential

3 dX[l] 0
dme(f) = ( ] dy )
Note that if f ~ g then Mc(f) ~ Mc(g) in K. We have two natural maps
a(f) =Y — Mec(f),

which is simply the inclusion of Y in the second factor of Mc(f) and

B(f) - Mc(f) — X[1]

which is the projection on the first factor. Before we continue we give a
general definition.

A category with translation is a pair (C, T') where C is a category and T
is an automorphism of C, called the translation (or shift*). We sometimes
use the notation [1] for T when no confusion is possible. A functor of
categories with translation is a functor F : (C,T) - (C', T’) between
the underlying categories such that F o T = T’ o F. We define an additive
category with translation to be a category with translation (A, T'), where A
is additive and T is also additive. Of course a functor of additive categories
with translation is simply a functor of categories with translations which
also is additive. Given an additive category A, the categories C*(.A) and
K*(A), for * = ub,+, -, b, are all additive categories with translation,
where the translation is given by the shift of complexes by one.

A triangle in an additive category with translation (A, T) is a sequence
of morphisms

x Ly Lz rx

vwe Sometimes Write
1

to indicate a map from X to TY. Because of this triangles are also denoted
by

(1]

X—Y—>7—.

A morphism of triangles is a commutative diagram

2 Also called suspension by the topologists.
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X Y z X1]
B
X" Y’ z" X"[1]

I.210 LEMMA
Let A be an additive category and let f : X' — Y be a morphism in C(A).
Then there exists ¢ : X'[1] = Mc(a(f)) such that ¢ is an isomorphism in
K(.A) and such that the following diagram commutes in K(A).

X f v a(f) Me(f) B(H) X[1] -f[1] an
Idx- Idy- Tdwme() ¢ { Idy-p
x v () 2 Me(a(r)) B2 v
Proof
See [KS90, LEMMA 1.4.2]. oy

We say that a triangle X' — Y — Z' - X'[1] is distinguished if it is
isomorphic to a mapping cone triangle X" - Y" - Mc(X" - Y") -
X"[1] as above.

I.2.11 THEOREM
Let A be an additive category. Then the category K(A) together with the
collection of distinguished triangles (d.t. for short) satisfies the following
properties.

TRO A triangle isomorphicto a d.t. isa d.t.
TR1 The triangle

X X s 0 — X 1]

isad.t

TR2 Any f : X' = Y can be embedded in a d.t.
x Ly 7 —x[]
TR3 A triangle
x Ly Lz hxn
is a d.t. if and only if
x Ly Lz hxn
isad.t

TR4 Given

17
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where the top and bottom rows are distinguished triangles, and the
square on the left is commutative there exists a (not necessarily unique)
Y :Z — Z" giving rise to a morphism of distinguished triangles.

X —L oy 7zt xq

a| ﬁ[ '
f/ ’

X" vy Lz xr

TR5 Given three d.t.s
x Ly Mz xq,
y Lz 5x vy
x Lz Ly xq,

there exists a d.t.

z ey Xy

such that the following diagram commutes.

X —L Ly g X[1]
. g u 14

NI YV‘,. X1
; » vl 711
Yk an
h I 1d h[1]
/AR (R (R YAl

Proof

See [KS06, THEOREM 11.2.6]. v

Triangulated Categories We define a triangulated category to be an additive category with trans-

lation (K, T) together with a collection of triangles, called distinguished,
satisfying axioms TRO — TR5 above. The above theorem states precisely
that K(A) is a triangulated category. A functor of triangulated categories
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(or more simply a A-functor) is an additive functor of categories with
translation sending distinguished triangles into distinguished triangles. A
triangulated subcategory of a triangulated category (K, T) is a subcategory
K’ which is triangulated with translation T’ such that T’ is the restriction
of T and the inclusion is a A-functor. We have that K (A) is a triangulated
subcategory of both K (A) and K™ (A), which in turn are triangulated
subcategories of K(.A). We notice that if K is triangulated then K° is also
triangulated.
Given a triangle in a triangulated category K
f (1]

x Lyt oz 5,

by applying TR1 and TR4 we obtain a commutative diagram

Xx—4 . x 0 TX
x—L .y_—* .7 TX

from which it follows that gf = 0.
A cohomological functor is an additive functor H : K — A between a
triangulated category and an abelian category such that for any d.t.

X>Y->Z7Z->TX

the sequence
FX - FY - FZ

is exact. Note that, applying TR3,if X - Y - Z - TX is distinguished
and H is cohomological, we have a long exact sequence

> FT7'Z > FX > FY > FY > FZ - FTX — -

PROPOSITION
Given an object W € K of a triangulated category, the functors Homg (W, -)
and Hom (-, W) are cohomological.

Proof
Let

x Ly Y7z Tx

be a distinguished triangle. We want to show that the sequence
Hom(W, X) — Hom(W,Y) — Hom(W, Z)

is exact. It is obviously a complex since gf = 0. Let now ¢ € Hom(W, Y)
be a morphism such that g¢ = 0. We must show that there exists y €
Hom(W, X) such that fy = ¢. In other words we want to show the
existence of the dashed arrows in the following diagram

19
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1d

w w 0 TW
v % { Ty |
x—L y_—* .7 TX

which is assured by TR3 and TR4. For Hom(-, W) one proceeds analo-
gously in K°. Y

PROPOSITION
Consider a morphism of distinguished triangles

X—t oy " x
) [ ﬁ I/ ' [ h [
XLy g H oy

if a and B are isomorphisms then so is y.

Proof
We apply Hom (W, -) to the diagram above and we write A for Hom(W, A)

and T for Hom(W, 1).

N I S S
-/ vy 7 " x-Y Ty
a{ E| 7{ 'T“E[ i
X 7 b3 g 2 Y U A S
QA N BN, N

Since Hom(W, -) is cohomological the top and bottom rows are exact,

also all vertical arrows, except perhaps for y, are isomorphisms. As a

consequence of the five lemma we have that y also is an isomorphism.
The arrow Z — Z' gives rise to a morphism of functors

h
Hom(-,Z) — Hom(-, Z').

From the discussion above we know that for any W the map Hom(W, Z) —
Hom(W, Z") is an isomorphism, therefore &, is an isomorphism of func-
tors. Finally, applying the Yoneda lemma, we have that y is an isomorphism
as well. v

Later we will need the following simple lemma.

LEMMA
Let

Xy o7 1X

be a distinguished triangle. Then f is an isomorphism if and only if Z = 0.
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Proof

Consider the following morphism of distinguished triangles.
X —.x 0 TX
X d Y zZ TX

By ProPoSITION 1.2.13, if f is an isomorphism then Z = 0; on the other
hand if Z = 0, then 0 - Z is an isomorphism and therefore f is an
isomorphism. v

Let’s turn our attention again to complexes. Fix an abelian category
A. Consider a morphism f : X' — Y in C(A). It is straightforward
to check that the map a(f) : Y — Mc(f) is a monomorphism, the
map B(f) : Mc(f) = X'[1] is an epimorphism and the kernel of B(f) is
isomorphic to the image a( f). Thus we obtain a short exact sequence

0-Y - Mc(f) - X[1] » 0.

Hence, if X' > Y - Z' — X'[1] is a distinguished triangle, which means
that it is isomorphic to a mapping cone triangle as above, we obtain a short
exact sequence

0-Y —>27Z ->X][1]->0.

Using TR3 it follows that the functor H : K(A) — A is cohomological.

1.3 LOCALIZATIONS

Let C be a category and let S be a class of morphisms. A localization of
C by S is a category Cs together with a functor Q : C — Cg satisfying the
following axioms.

Locl ForallseS, Q(s) is an isomorphism in Cg.

Loc2 Any functor F : C — D, such that F(s) is an isomorphism in D,
factors uniquely through Cs. In other words there exists a unique
functor Fs : Cs — D such that F is the composition Fs o Q.

C——D

We remark that axiom Loc2 implies that the natural map

Homg(cs,0) (G1, G2) = Homgey(c,py (G10Q, G20Q)

is bijective, viz. the functor oQ is fully faithful.

21
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I.3.1 Remark It is true that localizations always exist (see [GMo3] or [Mil])
and their construction is not hard: one simply adds formal inverses to the
arrows s € S. Of course there are some technical details to verify, however
we do not need such a general result.

The localization Cgs is unique up to equivalence and as a consequence we
have that (C°)s. is equivalent to (Cgs)°.

Multiplicative Systems In the general context the localization of a category is a very complicated
object: morphisms are not very easy to handle. However one gains some
structure by imposing the following conditions on S. A left multiplica-
tive system in a category C is a collection of morphisms S satisfying the
following axioms.

S1 If f is an isomorphism then f belongs to S.
S2 If f,g € S then gf € S, whenever defined.

S3 Given a diagram

where t € S.

S4 Given a commutative diagram

X:’,Y%Z
g

with s € S, it can be completed to

W--toX——= Yy ——7
9

where t € S.

Analogously a right multiplicative system in a category C is a class of mor-
phisms S satisfying S1, S2 and the following mirror axioms.
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S3’ Given a diagram

X—Y

|

w

where s € S, it can be completed to

X#Y
W ----= > 2
9

where t € S.

S4’ Given a commutative diagram

W-—5X—=Y
g

with s € S, it can be completed to

where t € S.

Multiplicative systems are sometimes referred to as localizing classes.
We are mainly interested in the case when S = Qis is the class of quasi-
isomorphisms of a triangulated subcategory of K(.A), for some additive
category A. Later we show that Qis is in fact both a left and right multi-
plicative system.

1.3.2 THEOREM
Let S be a left multiplicative system in a category C. Then the localization
of C by S exists and it may be defined as follows.

ObCs=0bC
Homc (X, Y) ={(s, X, f)|s: X' =X, f: X —>Y,seS}/~

where the equivalence relation ~ is defined below. A triple (s, X', f) can be

visualized as a left roof
X/
/N
X Y
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and given two roofs (s, X', f) (t,X", g)

X/ X//
/
X Y

are equivalent if there exists a third roof (u, X", h) such that the following
diagram commutes.

Xll/

h

7

Given two roofs (s, X', f), (£, Y', g) we can find, thanks to S3, a third roof
(u, W, h) such that the following commutes

X’ ‘ \JY/
X Y Z

and we define the composition of (t,Y’, g) with (s,X', f) by the equiva-
lence class of the roof (su, W, gh).

Similarly, if S is a right multiplicative system, the localization Cs exists
and it may defined analogously. In particular, morphisms may be repre-
sented by right roofs (f,Y’,s)

Y/
N
X Y

under the corresponding equivalence relation and with the corresponding
composition.

Sketch of Proof
The proof is rather technical, we refer to [Mil, CHAPTER 1] for all the neces-
sary details. First one verifies that ~ is indeed an equivalence relation over
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1.3 LOCALIZATIONS

roofs and that composition is well-defined, associative and that identities
exist. The quotient functor is given by the identity on objects and sends

any morphism f : X - Y to the roof (Id, X, f), or to the roof (f,Y,1d).

If F: C — D is a functor sending arrows in S to isomorphisms, then we
define Fs : Cs — D to be F on objects and to send a roof (s, X', f) to

F(f) o F(s)™!, or equivalently to send a roof (f,Y’,s) to F(s)™" o F(f).

If G : Cs — D is another factorization of F then, for any roof (s, X', f),
G((X',f)) =G ((1d, X, f) o (s, X',1d))
=G(Q(N)°G(Qs)™)
=F(f)oF(s)™
=Fs ((X1)).
And similarly for right roofs. v
Convention From now on, by multiplicative system or localizing class we
mean a system which is both left and right multiplicative.

Let’s consider now the localization of a subcategory.

PROPOSITION
Let C be a category, C' a full subcategory, S a multiplicative system. Let
S’ be the collection of morphisms of C' which belong to S. Assume that
S’ is a multiplicative system in C', then the inclusion C" — C passes onto
the localizations Cs, - Cs. Assume moreover that one of the following
conditions hold

(L4) If s : X — Y' is a morphism in S, with Y' € C', there exists
t: W' — X, with W’ € C' and such that st € S.
(Ls) If s : X' - Y is a morphism in S, with X' € C', there exists
t:Y —» Z', with Z' € C' and such that ts € S.
Then the induced functor C's, — Cs is fully faithful.

Proof

The first statement is obvious. If 1 : C" & Cand Q : C — Cg are respectively
the inclusion and quotient functors, then any s € S” maps to Qo1(s), which
asan isomorphism in Cg, therefore Qu factors through C’,. For the second
assertion we refer to [Mil, PROPOSITON 1.4.1]. oy

Let’s add some structure: let K be a triangulated category. A null system
N in K is a class of objects satistying the following axioms.

NS1 The zero object of K belongs to N.
NS2 An object X belongs to N if and only if TX belongs to N.
NS3 IfX ->Y - Z - TXisadt.andX,Y € N, then Z e N.

We define Sy to be the collection of morphisms f : X — Y such that f is
embedded in a d.t.

x Ly 7 .1x

with Z € N. Not only do we claim that Sy is a multiplicative system, we also
claim it is compatible with the triangulation, in the sense that it satisfies
the additional axioms:

25
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S5 For any morphism s, s € Sy if and only if T's € Sps;

S6 The following diagram, where the rows are d.t.s and the vertical
maps are in Sy

X Y Z TX
s{ t| Ts{
X/ Y’ Z' X'

can be completed into a morphism of triangles

X Y Z TX
l
s{ t| u} Ts
|
1
X’ Y’ Z' X'
with u € Sy.
Proof
See [KS90, PROPOSITION 1.6.7]. v

In this case we denote by K/N the localization K, . The key result is that
K/N is a triangulated category and that the quotient functor Q : K - K/N
is a A-functor. In fact, if we start with a localizing class S compatible
with the triangulation, we observe that there is an obvious translation
functor on K. Indeed, if s € S then by S5 Ts € S, therefore T induces an
automorphism Ts : Ks — Ks which we denote simply by T. Since Kg,
endowed with the translation T, is a category with translation, we may
speak of triangles in Ks. We define a triangle X - Y - Z - TX of Ks to
be distinguished if there exists a d.t. X" > Y’ - Z' - TX', of K, and an
isomorphism of triangles

X Y Z X
a[ B[ Y[ Ta{
X/ Y’ z' X'

in Ks. With the above translation and the above collection of distinguished
triangles the category Ks becomes triangulated and the quotient functor
Q: K = Kg is a A-functor (see [Mil, THEOREM 1.6.1]).

Again, if N is a null system and X € N we have Q(X) =~ 0. In fact
X - X - 0—- TXisad.t and therefore X - 0 - TX - X isad.t. and
TX € N, thus (X — 0) € Sy yielding Q(X) =~ 0.

Furthermore K/N satisfies the following universal property: any A-
functor functor F : K — K’ such that FX ~ 0 for all X € N, factors
uniquely through K/N. In fact if f € Sy, namely

x Ly o7 .1X
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isad.t. with Z € N, then

F
X L BY 5 FZ — TFX

is a d.t. We then consider the morphism of d.t.s

FX FY F7Z TFX
FY FY 0 TFY

and since Id and (FZ — 0) are both isomorphisms so is Ff. As a result F
factors through K/N.

THEOREM
Let K be a triangulated category; N a null system in K; K’ a full triangulated
subcategory; and finally let N be N n K'. Assume that

(L6) anyd.t.inK, X' > Y > Z - TX, withX, Y € K, isisomorphic
toad.t inK',

then N’ is a null system in K’ and the inclusion K' — K induces a functor
K'/N" — K/N. Assume moreover the following condition.

(L7) Any morphism X' - N in K, with Y € K" and Z € N, factors
through an object of N'.

Then the induced functor K'/N" — K/N is fully faithful.

Proof
See [KS90, PROPOSITION 1.6.10]. v

1.4 DERIVED CATEGORIES

Fix an abelian category A. Let N*(A) be the family of complexes in
K*(A) quasi-isomorphic to zero, where * = ub,+,—,b. It is straight-
forward to verify that N*(A) is a null system, in fact: axioms NS1 and
NS2 are obviously satisfied, and NS3 is a consequence of the fact that
cohomology is a cohomological functor. We now show that the local-
izing class S associated with N*(.A) is precisely Qis* (A), the class of
quasi-isomorphisms in the category K*(\A). If f € S then there is a d.t.

x Ly 7 x[]
where Z’ is quasi-isomorphic to zero. Since H' is cohomological we have
an exact sequence H"}(Z') - H"(X') - H"(Y') - H"(Z’) from which
it follows that H” (X") - H"(Y") is an isomorphism, and hence f is a gis.
On the other hand, if f is a qis then the cohomology long exact sequence
associated with the d.t.

X Lo ¥ s Me(f) — XT1]

27
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implies that the mapping cone Mc( f) is quasi-isomorphic to zero, thus
proving f € S.

We define the derived category of A to be D(A) = K(A)/N(A), along
with the bounded versions D*(A) = K*(A)/N*(A), for » = +,—,b. If
the category A is understood we often omit to explicit the dependency
from A in the notation. The results of the previous section imply that D is
triangulated and that the quotient functor Q : K — D is a A-functor.

Remark If Q: K — D is the quotient functor and X € K then:
Q(X) ~0 < H(X)=0.

Also a morphism f : X' - Y  in D is an isomorphism if and only if there
exists a qis s : W — X" such that fs is null homotopic; or dually, f is an
isomorphism in D if and only if there exists a qis # : Y* — Z" such that ¢ f
is null homotopic.

The cohomology functors pass over to the derived category. Namely
the functor H” : D(A) — A is well-defined and cohomological. Of
course, the functor H' : D — C is also well-defined. We recall that, given
a complex X', H'(X") is defined to be the complex (H"(X")),, with null
differentials. Also, a morphism f : X' — Y  in D is an isomorphism if and
only if H"(f) is an isomorphism for all n € Z.

If we start with a short exact sequence

0-X>Y—>72Z->0

we define a morphism of complexes ¢ : Mc(f) - Z as ¢ = (0,g). We
claim that ¢ is a quasi-isomorphism. There is a commutative diagram
with exact rows

0 X X 0 0
0 X d Y V4 0

which yields a short exact sequence
0 - Mc(Idx-) > Mc(f) > Mc(0 > Z) -0

where Mc(0 — Z') is clearly equal to Z" and it is easy to see that Mc(Idx-)
is an exact complex. As a consequence of the cohomology long exact
sequence we have isomorphisms H" (Mc(f))>H"(Z'). If we denote the
inverse of ¢ in D by y we have a morphism of triangles

X f v a(f) Mc(f) B(S) X

Id[ Id[ ¢ 1d
X f v 7 yop(f) TX
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hence an exact sequence gives rise to a distinguished triangle in D.

We now illustrate another property of derived categories. Let’s denote
by D. the full triangulated subcategory of D consisting of complexes X'
such that H' (X") belongs to C* (for * = +, —, b). With a slight abuse of
notation, we claim that D*, the full subcategory consisting of complexes
lying in to C*, is equivalent via the inclusion to D, the full subcategory
consisting of complexes with cohomology lying in C” (see [KS06]).

We say that a complex X' is a k-complex if X" = 0 for n # k. We say
that X' is an H¥-complex if H*(X') = 0 for n # k. We implicitly think
of objects of A as 0-complexes. One has that, through the composition
A - C - K - D, Ais equivalent the full subcategory of D consisting of
H-complexes.

I.5 RESOLUTIONS

We recall that if B is a subcategory of LA we say that B is cogenerating if
any A € A is a subobject of some B € 5. We say that B is generating if any
A e Aisa quotient of some B € 5.

LEMMA
Let T be a full cogenerating additive subcategory of A and let X' € C**(A),

for some integer a € 7. Then there exists 1 € C**(T) and a gis X — T..
Dually, if P is a full generating additive subcategory of Aand X' € C=*(A),
then there exists P € C**(P) and a qis P — X.

Proof
See [KS06, PROPOSITION 13.2.1]. v

Again, let 7 and P be two additive subcategories of A. Consider the
following conditions.

There exists an integer d > 0 such
that, for any exact sequence

(1.8) Ij»>->1[->-X->0

withlje J,Y e J.

There exists an integer d > 0 such
that, for any exact sequence

(L9) 0>-X—>P - >Py

with P; e P, X e P.

THEOREM
If T is a full cogenerating subcategory of A then the natural functor

K*(Z)/N"(Z) — D" (A)

is an equivalence. Moreover, if T satisfies condition (1.8) above, then the
functor

K®(Z)/N*(Z) — D"(A)

29
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is also an equivalence.
Similarly, if P is a full generating subcategory of A then the functor

K™ (P)/N"(P) — D" (A)

is an equivalence. Moreover, if P satisfies condition (1.9) above, then the
functor

K®(P)/N°(P) — D°(A)
is also an equivalence.

We now introduce injective and projective objects of an abelian category
A. Werecall that, given X € A, the functors Hom 4 (-, X) and Hom 4 (X, -)
are both left exact. We say that an object I € A is injective (in A) if
the functor Hom 4 (-, 1) is exact. Analogously, an object P is projective
if Hom 4 (P, -) is exact. We say that A has enough injectives if the full
subcategory Z 4 consisting of all injective objects is cogenerating. Of
course, we say that A has enough projectives if the full subcategory P 4
consisting of all projective objects is generating.

There other equivalent ways to define injective and projective objects.
First we give another definition.

DEFINITION/PROPOSITION
Let

0—x Lx-2,

X// _ O
be a short exact sequence. Then the following are equivalent.
(L10) There exists h : X" — X such that gh = Idx».
(L11) There exists k : X - X' such that k f = Idx.
(L12) Thereexisth: X" — Xandk : X — X' such that1ldx = fk+hg.

(L13) Thereexist ¢ : X - X' @ X" andy: X' @ X" — X such that ¢
and  are mutually inverses of each other.

(L14) ForanyY € A the map Hom 4 (Y, g) is surjective.
(L1s) ForanyY € A the map Hom 4 (f,Y) is surjective.

If any of the above conditions holds, we say that the short exact sequence
splits.

Proof
See [KS06, PROPOSITION 8.3.14]. o

I.5.4 THEOREM

The following are equivalent.
(L16) 1is injective.

(L17) Maps X" — 1, where X' is a subobject of some object X, can be
extended to X. In other words
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AN

we claim the existence of the dashed arrow in the above diagram with
exact rows.

0 X' X
!
!
|
;
I

(1.18) Any exact sequence
0-I-X->X">0
splits.

Also, any two objects X', X" are injective if and only if X' @ X" is injective.
Similarly, the following are equivalent.

(L19) P isinjective.

(L20) Maps P — X", where X" is a quotient of some object X, can be
lifted to X. In other words

/

R
4
o

we claim the existence of the dashed arrow in the above diagram with
exact rows.

(L.21) Any exact sequence
0->X' >X->P-0
splits.
Also, any two objects X', X" are projective if and only if X'@X"" is projective.

Proof
See [KS06, SECTION 8.4]. v

We state an important technical property of injectives and projectives.

I.5.5 LEMMA
If f : X' > I is a morphism in C(A), where I' € T 4 is a complex made up
of injectives and where X' is an exact complex, then f is null homotopic.
Dually, if g : P° - X' is a morphism in C(A), where P € Py isa
complex made up of projectives and where X' is an exact complex, then g is
null homotopic.

Proof
See [KS06, LEMMA 13.2.4]. v
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A great consequence of the above lemma is the following theorem. We
remind that we denote Z 4 and P 4 the full subcategories of A, consisting
of injectives and projectives respectively.

I.5.6 THEOREM
If A has enough injectives then the quotient functor K" (Z4) - D" (A)
is an equivalence. If moreover I 4 satisfies condition (1.8) above then the
quotient functor K°(Z4) — D°(A) is also an equivalence.
Dually, if A has enough projectives then the quotient functor K~ (P4) —
D™ (A) is an equivalence. If moreover P4 satisfies condition (1.9) above
then the quotient functor KP(P 4) - D°(A) is also an equivalence.

Derived Category of We now consider the localization of an abelian subcategory of A.
Subcategories
Ls.7 Notation If A’ is a full abelian subcategory of A we write Dy, (A) to in-
dicate the full triangulated subcategory of D*(.A) consisting of complexes
whose cohomology lies in A, where * = ub, +, -, b.

Of course the inclusion A" - A induces a functor D*(A") - D, (A).
We recall that a full abelian subcategory B is thick if it is closed under
kernels, cokernels and extensions.

1.5.8 THEOREM
Let A’ be a thick subcategory of A. Assume the following condition.

(L22) For any monomorphism W' < X, with W' € A', there exists a
morphism X — U, with 1 € A’, such that the composition is also a
monomorphism (it can be visualized by the following diagram with
exact rows and diagonals).

0

N\

0 w’

AN

Then the functors D*(A") - D%, (A) and D (A") - D%, (A) are equiv-
alences.

e

Similarly, we assume the following condition.

(L23) For any epimorphism X — Z', with Z' € A’, there exists a
morphism P’ — X, with P’ € A’, such that the composition is also
an epimorphism (it can be visualized by the following diagram with
exact rows and diagonals).
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<

/

R
N
o

/

Then the functors D™ (A") - D1, (A) and D°(A") - D%, (A) are equiv-
alences.

Proof
See [KS06, THEOREM 13.2.8]. N

As a particular case we obtain the next corollary.

COROLLARY
If A is a thick subcategory of A such that any X' € A’ is a subobject of an
' € A’ which is injective as an object of A, then the functors D*(A’) —
D’ (A) and D°(A’) -~ D% (A) are equivalences.

Analogously, if any X' € A’ is a quotient of a P € A’ which is projective
as an object of A, then the functors D™(A") — D, (A) and DP(A’) -
D5, (A) are equivalences.

1.6 DERIVED FUNCTORS

Let us start by considering the general situation. Consider a functor
F : C » D and a class of morphisms S in C. We already know that if F
sends elements of S to isomorphisms in D then the functor factors through
the localization. In the general case however F need not to factor, so we
want to define what resembles most closely the desired factorization. We
give the following definitions.

(L24) A rightlocalization of F (with respect to S) is a functor RgF : Cs —
D together with a morphism of functors t: F - RsF o Q

RsFoQ

such that for any functor G : Cs — D the map
Homg(cs,0) (RsE G) — Homg(c,py (RsFoQ,Go Q)
— Homge(c,0) (EGo Q)

is bijective. A functor F is said to be right localizable if it admits
a right localization. Note that if (RsF, 1) exists it is unique up to
unique isomorphism.?

3 Given a second localization (R’, t"), substitute G with R’ and trace back T and 1’ to obtain

the isomorphism.
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(I.25) F:C — D isa universally right localizable functor is such that for
any F’' : D — D', the functor F’ o F is right localizable and the
obvious® natural transformation

Rs(F o F) —————— F' o RsF

is an isomorphism.

Similarly one defines left localizations. A left localization of F is a functor
LsF : Cs — D together with a morphism of functors 6 : LsF 0o Q — F

LsFoQ

such that for any other functor G : Cs — D the natural transformation o
induces a bijection

Homg(cg,p) (G, LsF) — Hompe(c,p) (G o Q.F).

We say that F is left localizable if it admits a left localization; of course, the
pair (LsF, o) is unique up to unique isomorphism. Finally F is universally
left localizable if for any functor F’ : D — D', F’ o F is left localizable and
the natural transformation F' o LsF — Ls(F’ o F) is an isomorphism.

Caution Even if a given functor F is both left and right localizable the
localizations LF and RF are in general not isomorphic. However there
always exists a morphism LF — RF between them.

Notation In various definitions that we encounter one often has to explicit
the dependency over some localizing class S or some null system N. As it
becomes cumbersome we choose to omit the dependencies in the notations
when no confusion may arise. We remind that we are mainly interested in
only one type of multiplicative systems: quasi-isomorphisms.

Admittedly, the above definitions are rather technical and abstract. We
would like an easier way to establish the existence and to compute the
localizations of a functor. It turns out that there are some cases in which
computing the localizations becomes easier.

THEOREM

Let F : C — D be a functor. Let S be a multiplicative system in C, let C' be
a subcategory of C and denote by S’ the class of morphisms of C' belonging
to S. Assume that for any s € S', F(s) is an isomorphism in D. Consider
the following conditions.

(L26) Forany X € C, there existss: X —> 1 withl e C' ands € S’
(L27) Forany X € C, thereexists t : P > X, withP e C' andt e §'.
Then

4 Induced by K.
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(1.28) If (1.26) holds then F is universally right localizable and the

composition

cocXcsip

is isomorphic to the restriction of F to C'.

(L29) If (1.27) holds then F is universally left localizable and the com-
position

cocScs=p

is isomorphic to the restriction of F to C'.

Proof
See [KS06, PROPOSITION 7.3.2]. N

We now turn to the localization of functors in triangulated categories.
The definition of the localization of a A-functor is given exactly as above,
only replacing functor with A-functor everywhere. Fix now two triangu-
lated categories K, K" and two null systems N, N’. Let Q : K - K/N and
Q' : K" - K’/N’ be the quotient functors.

We say that a A-functor F : K — K’ is right localizable (with respect to
(N,N")) if Q" o F : K > K’/N’ is universally right localizable with respect
to the localizing class Sy, associated with the null system N. We write RF
for the right localization of F. Ditto for left localizations.

DEFINITION
In the setting above, let A be a full subcategory of K. Consider the following
conditions.

(I30) ForanyX €K, there exists (X - 1) e Sy with 1 € A.
(L31) Forany X € K, there exists (P - X) € Sy with P € A.
(L32) F(NnA)cN.

The subcategory A is F-injective (with respect to (N, N") of course) if it sat-
isfies conditions (1.30) and (1.32) above. The subcategory A is F-projective
if it satisfies conditions (1.31) and (1.32) above.

Note that if F(N) c N’ then the whole category K is both F-injective and
F-projective.

THEOREM

If | is F-injective then F is universally right localizable and its right local-
ization RF is a A-functor. Moreover RF may be defined by the following
diagram

K —— K/N
|*>/|/(|ON) iRF

T
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and
(I33) RE(X) ~F(I), for (X > 1) eSyandlel.

Similarly, if P is F-projective then F is universally left localizable and
its left localization LF is a A-functor. Moreover LF may be defined by the

following diagram
K— K/N
P——P/(PnN) | LF
\ .
K'/N’
and

(L34) LE(X) ~ B(P), for (P > X) e Sy and P € P.

Proof
Itis a straightforward consequence of THEOREM 1.6.3 applied to the functor
Q'oF. v

1.6.6 THEOREM
Let F: K - K and G : K" = K" be two A-functors and let N, N’, N’ be
null systems in K, K" and K" respectively (we consider localizations with
respect to these null systems).

« IfRF, RG and R(G o F) exist then there is a canonical morphism of
functors

(1.35) R(GoF) — RGoREF.

o Let | be an B-injective subcategory of K and let I be a G-injective
subcategory of K'. Assume that F(1) c I'. Then | is (G o F)-injective
and (1.35) is an isomorphism.

Dually:
o IfLF, LG and L(G o F) exist then there is a canonical morphism of
functors
(1.36) LGoLF — L(GoF).

o Let P be an F-projective subcategory of K and let P’ be a G-projective
subcategory of K'. Assume that F(P) c P’. Then P is (G o F)-
projective and (1.36) is an isomorphism.

Proof
Let’s prove the first assertion. By DerINITION (L.24), for any functor
J: K/N - K" /N" we have a bijection

Hom (R(G o F),]) *Hom (Q" o GoF,JoQ),
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which for ] = RG o RF yields
(I37) Hom (R(GoF),RGoRF)~Hom(Q"oGoFRGoRFoQ).

Also by definition we have two natural transformations Q'F -~ RF 0 Q
and Q"G - RG - Q.

Q' oF QoG
T
K /U\K’/N' K/ I KII/NII
\/ \/

RFoQ RGoQ’
We thus deduce the morphisms Q” cGoF - RGoQ'oF - RGoRFoQ,
which through the bijection (I.37) gives (1.35).

Let’s prove the second assertion. The subcategory | is obviously (G o F)-
injective. Applying THEOREM L.6.5 to the present case, we find how to
compute localizations. Let X € K and let (X — I) € Sy, where I € |. Then
RE(X) ~ F(I), in turn F(I) € I" therefore RG(F(I)) = G(F(I)). Finally,
since | is (GoF)-injective, we have R(GoF)(X) ~ GoF(I) = RG(F(I)) ~
RG(RF(X)), for all X € K. The proof for projectives is similar. v

Let’s move on to derived categories. Let F : A — A’ be an additive func-
tor between abelian categories and let the A-functors K*(F) : K*(A) —
K*(A’) be its extensions to the homotopy categories, for * = ub, +, —, b.
We usually denote the extensions of F still by F. Let, as usual, * be one of
ub, +, -b.

We say that F is right derivable (or admits a right derived functor) on
K*(A) if the A-functor K* (F) is universally right localizable (with respect
to N*(A) and N*(A") ).

In such a case, the right localization of F is denoted by R*F and is called
the right (total) derived functor of F. The functor H* o R*F is denoted by
R*F and called the k-th (classical, right) derived functor of F.

Similarly, F is left derivable if K* (F) is universally left localizable. The
left localization of F is denoted by L*F and called the left (total) derived
functor of F. Finally H* o L*F is denoted by L*F and called the k-th
(classical, left) derived functor of F.

Remark Notice that R*F and L*F (when they exist) are A-functors. Also
R*F and L*F (when they exist of course) are cohomological functors from
D*(A) to A’. When no confusion arises we drop the superscript * from
the notation and simply denote the derived functors by RF and LF.

We say that a full additive subcategory Z of A is F-injective if the sub-
category K" (Z) is K*(F)-injective, in the sense of DEFINITION 1.6.4.
Similarly, P is F-projective if K™ (P) is K™ (F)-projective.

Remark By definition Z is F-injective if and only if
(I.38) forany X' € K*(\A) there exists a qis X' — I', with I e K*(Z);
(I.39) for any exact complex I' € K" (Z), F(T') is exact.

Analogously, P is F-projective if and only if
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(Lgo) for any X' € K™ (.A) there exists a qis P — X', with P ¢
K™ (P);

(L41) for any exact complex P' € K™ (P), F(P") is exact.

When dealing with injective and projective subcategories, deriving func-
tors becomes a simple matter.

1.6.9 THEOREM
If T is F-injective then R"F : D*(A) - D" (A’) exists and

(I.42) R'F(X) ~ F(D), for any qis X' - I, with I € K (Z).
If P is F-projective then L"F : D™ (A) - D™ (A’) exists and
(1.43) LYF(X') ~ F(P), for any gis P - X, with P" e K" (P).

Proof
It follows from THEOREM 1.6.5 above. oy

Now we seek for a criterion to determine injectiveness and projectiveness
of subcategories.

I.6.10 THEOREM
Let Z be a full additive subcategory of A and let F be left exact. Assume that

(I.44) T is cogenerating;

(L4s) for any exact sequence 0 - 1" > 1 - X" - 0, withI',1 € Z,
we have X" € I;

(L46) for any exact sequence 0 > 1' -1 1" - 0, with1',[,1"” € Z,
0> F(I') > E(I) - F(I") — 0 is exact.

Then T is F-injective.
Similarly, let F be right exact. Assume that

(L.47) ‘P is generating;

(1.48) forany exact sequence0 - X' - P — P — 0, with P, P € P,
we have X' € P;

(L.49) for any exact sequence 0 — P’ - P — P” — 0, with P’ P,P" ¢
P,0— F(P') > F(P) - F(P") — 0 is exact.

Then P is F-projective.

Proof
See [KSo6, COROLLARY 13.3.8]. v
F-acyclic Objects When the existence of the derived functor is already known we can find

other injective and projective subcategories of A.

1.6.11 Remark LetF : 4 — A’ be an additive functor between abelian categories
and assume that there exists an F-injective subcategory of .A. One notices
that R*F(X) = 0, for X € A and k < 0, if F is furthermore left exact then
R°F(X) ~ F(X). Indeed, for X € A and X - I a qis, the morphism
X - T - =T isagis.
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If F is right derivable, an object X € A is called right F-acyclic if
RF(X) =0

for k # 0. If Z is an F-injective subcategory of \A, then any object of Z is
right F-acyclic.

If A has enough injectives then the full subcategory Z 4 of injectives
is F-injective for any additive functor F. Indeed, any exact complex in
K™ (Z_4) is homotopic to zero by LEmma 1.5.5. In particular, RF exists.

Of course we have a mirror remark for left derived functors.

Remark Dually, assume that there exists an F-projective subcategory of
A. One notices that L*F(X) = 0, for X € A and k > 0, if F is furthermore
right exact then L°F(X) ~ F(X).

If F is left derivable, an object X € A is called left F-acyclicif L*F(X) = 0
for k # 0. If P is an F-projective subcategory of .4, then any object of P is
left F-acyclic.

If A has enough projectives then the full subcategory P 4 projectives is
F-projective for any additive functor F. In particular, RF exists.

THEOREM
Let F be left exact and let I be F-injective. Write L for the full subcategory
of A consisting of right F-acyclic objects. Then Ly contains I and satisfies
conditions (1.44)-(1.46) above. In particular Ty is F-injective.

Dually, let F be right exact and P F-projective. Then Pk, the category of
left F-acyclics, contains P and satisfies (1.47)-(1.49) above.

Proof

We want to prove that Zr satisfies the hypotheses of THEOREM 1.6.10. Since
any object in Z is F-acyclic we have that Zp contains I, and therefore is
cogenerating. Let 0 - X’ - X — X" — 0 be exact, where X’ and X are
F-acyclic. Then, regarding the above sequence as a d.t. in D(.A) and since
R*F exists and is cohomological, we have a long exact sequence

.. > R'F(X) » RFF(X") - R F(X')---

which implies that R'F(X”) = 0 for k # 0, and hence that X is right
F-acyclic. By REMARK 1.6.11, the above exact sequence yields an exact
sequence

0-F(X') > F(X) > F(X") > R'F(X') =0
therefore Zr is F-injective. For projectives the proof is analogous. o

We finish with the composition of derived functors.

THEOREM

LetF: A - Band G : B - C be two additive functors among abelian
categories. Assume that the right derived functors RF and RG exist on D™.
Then there is a canonical morphism of functors

(I.50) R(GoF) — RGoRFE.
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Assume moreover that there exist an F-injective subcategory Z and a G-
injective subcategory J such that F(Z) c J. Then T is (G o F)-injective
and the morphism (1.50) induces an isomorphism

(Ls1) R(GoF) — RGoRF.

Dually, assume that the left derived functors LF and LG exist on D™.
Then there is a canonical morphism of functors

(Ls2) LGoLF — L(GoF).

Assume moreover that there exist an F-projective subcategory P and a G-
projective subcategory Q such that F(P) c Q. Then P is (GoF)-projective
and the morphism (1.50) induces an isomorphism

(L53) LGoLF — L(GoF).

Proof

All assertions are just an application of THEOREM 1.6.6 to the functors
K*(F),K"(G), K" (F) and K (G). v

1.7 BIFUNCTORS

A double complex (or bicomplex) X, in an additive category A, is a
collection of objects (X?*?), ;7 and differentials

CLAED GEEED Chtt

o1 xP1 —s Pt

such that 0?*19929 = 0, §79*18P9 = ( and 6P*199P9 = 9P 9189, A
double complexe can be visualized as a commutative diagram

p>q+1
L XPeatl 84, Xptbatl ..,
8P §patl
P
X1 Xptbe

where the rows and the columns are complexes. Often, for a double com-
plex X, the horizontal differentials 95’7 are denoted by d5”*? and the
vertical differentials 857 are denoted by d¥”?. Morphisms of double
complexes are defined as collection of morphisms (f#*9), 4z commuting
with all the differentials. We have thus constructed the additive category
C*(A) of double complexes in A.
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We define two functors Fy, Fy; : C*(A) - C(C(.A)). The first consid-
ers the columns of a double complex as objects in C(.A) and the horizontal
maps as differentials between them. The second functor does the same
for rows. Namely, if X" is a double complex, then F;(X"') = X is the
complex (of complexes) with components

Fr(X7)" = XJ' = X"
and Fr1(X"') = Xjj is the complex with components
Fry (X>)™ = XI = X"

It is straightforward to check that the functors F; and Fy; are equivalences
of categories.

Assume now that A admits countable coproducts, or assume that the
complexes we work with satisfy the following finiteness condition

(Is4) foranyn e Z,theset{(p,q) € ZxZ|p+ q = n, X9 + 0} is finite,

which is always satisfied if we work with first quadrant or third quadrant
double complexes (i.e. X?*7 = 0 outside the first or third quadrant). We
now define a functor tot = totg : C*(LA) - C(.A), which takes a double
complex and gives a (simple) complex. If (X, dx, 6x) is a double com-
plex then (tot(X>")", d"), is called the total complex (or simple complex)
associated with X". Its components are

tot(X)" = @ XP1
p+q=n

and the differentials d" are uniquely determined by their restrictions

d = §ptbagra 4 (_1)Pap>q+151))q

n
‘xP,q
on each X?*4 such that p + g = n.

By bifunctor we mean simply a functor F : 4 x A" — A" defined on
the product of two categories. A bifunctor is said to be additive, left exact,
right exact, exact, coholomogical or a A-bifunctor if it so with respect to
each variable.

Example For a k-linear abelian category C, the functor Home : C° xC —
Ik-Mod is a left exact bifunctor.

LetF: Ax A" - A" be an additive bifunctor between additive categories.
We want to extend F to complexes. Given two complexes X', Y we form the
double complex F (X', Y') with components FP9(X',Y") = F(X?,Y19)
and with horizontal differential 977 = F(d%, Y1) and vertical differential
871 = F(XP, dl). Composing with the total complex functor we obtain
the desired extension F of F to complexes. Since we want to use the
finiteness condition (I.54), we impose some boundedness conditions: we
define F' (which we usually denote simply by F) to be

F' = totoF : C*(A) x C*(A) —> C*(A”")

where * = +, —, b.

41

Total Complex

Bifunctors



Localization of
Bifunctors

42

L.7.2

HOMOLOGICAL ALGEBRA - A QUICK TOUR

One notices (see [KSo6, PROPOSITION 11.6.4]) that the extensions of F
are compatible with homotopy, thus obtaining functors

F:K"(A) xK*(A") — K*(A")

for » = +, —, b. Before passing onto the derived category we take a look
at a more general situation. We study the localization of a functor of two
variables.

Remark If Cand C’ are two categories and S and S’ are two multiplicative
systems then S x 8’ is a multiplicative system in C x C’ and (C x C") sxs/
is equivalent to Cs x Clg,.

Let K, K’, K" be three triangulated categories with respective null sys-
tems N, N’,N” and respective quotient functors Q, Q’, Q”. Let F : KxK' —
K" be a A-bifunctor. We say that F is right localizable (with respect to
(N x N’,N")) if the functor Q" o F is universally right localizable with
respect to the multiplicative system Sy x Snr (see remark above). Similarly
we say that F is left localizable if Q" o F is universally left localizable. Again
we omit the dependencies from the null systems in our notations. We now
want to define injective and projective subcategories in the above setting.

Let |, I be full subcategories of K, K'. We say that the pair (I,1") is
E-injective if the following conditions hold.

(Lss) ForanyIel,I"is F(I,-)-injective.
(L56) Foranyl’ el’,1is F(-,1")-injective.

Unraveling the definitions we see that (I,1") is F-injective if and only if
the following conditions are satisfied.

(Ls7) Forany X € K, there exists (X — 1) € Sy with L € I.
(L58) Forany X' € K', there exists (X’ - I') e Sy with I e I.

(Ls9) ForanyI e |, 1" € I’, we have F(I,I') e N"ifI e Nor I’ € N'.
(viz. F(InN,I") c N" and E(l,"nN") ¢ N")

Similarly, if P, P are full subcategories of K, K’, we say that the pair (P, P")
is F-projective if the following conditions hold.

(L.60) Forany P € P, P’ is F(P, -)-projective.

(L.61) Forany P’ € P’, Pis F(-,1")-projective.

Of course, the above conditions are equivalent to the conditions below.
(L.62) Forany X € K, there exists (P - X) € Sy with P € P.

(L.63) Forany X’ € K’, there exists (P’ — X') € Sy with P’ € P’.

(I.64) Forany P e P, P’ € P/, wehave F(P,P’) e N"ifPe Nor P e N'.
(viz. E(PnN,P") c N” and F(P,P'nN") c N")

The following results are a consequence of the theory of localizations of
functors developed so far.
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1.7.3 THEOREM
In the setting above, assume the pair (1,1") to be F-injective. Then F is
right localizable, its right localization RF : K/N x K'/N" - K"”/N" is a
A-bifunctor and

(L65) RE(X,X') ~ F(LT'), for (X = I) € Sn, (X' > I') € Sy,
Iel,L el

Similarly, assume the pair (P, P") to be F-projective. Then F is left lo-
calizable, its left localization LF : K/N x K'/N" = K" [N" is a A-bifunctor
and

(166) LE(X,X') = F(P,P’), for (P - X) € Sy, (P’ > X') € Sy,
PeP, P eP.

1.7.4 COROLLARY
In the above setting assume that

(1.67) F(I,N") c N";

(1.68) forany X' € K', I is B(-, X")-injective.
Then F is right localizable and
(1.69) RF(X,X’) ~ RF(-, X')(X).

Analogously, assume that

(L70) F(P,N") c N";

(L71) forany X' € K, P is F(-,X")-projective.
Then F is left localizable and
(I72) LF(X,X) = LE(-, X')(X).

Of course a similar statement holds when switching the variables of F
around.

The definitions and results for derived categories are analogous to the
ones for triangulated categories. We just state an additional result, a proof
can be found in [KS06, COROLLARY 13.4.5].

I.7.5 COROLLARY
Let T be a cogenerating subcategory of an abelian category A. Let F : A x
A" — A" be an additive bifunctor. Assume that

(L.73) foranyleZ, F(1,-) is exact;
(L74) forany X" € A, T is F(-, X')-injective.
Then F is right derivable and for X' ¢ K (A), X" e K" (A)
(L75) REF(X,X") ~ Q" o KF(I',X"), fora qis (X - I') with T ¢
K" (2).
In particular for X € Aand X' € A, RF(X,X") = RF(-, X")(X).
There is of course a similar statement for projectives.

Applying these results to the functor Hom 4 one proves that (see [KSo6]
for details) Ext’ (X, Y) = R¥ Hom 4(X, Y) ~ Homp (X, Y[k]).
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1.8 SPECTRAL SEQUENCES

We briefly recall a few results about spectral sequences. For proofs
one may consult [GMo3] and [Weig4]. For a more careful treatment we
suggest [Muro6], which follows [Gro67, Oyy;-$11].

First we give a few definitions. Let’s fix an abelian category .A. Recall
that a subobject of an object X is simply a monomorphism W — X. We
define a relation on subobjects. Given two subobjects of X, a; : X; = X,
a, : X, = X, we say that a; precedes a,, and often write X; c X, if the
first factors through the second

—

Mo
A

S}

and we also say that a, follows a;. We say that two subobjects are equivalent
if they mutually precede each other. Given a family of subobjects {q; :
X; = X}; we define an infersection of the family as a subobject a : W = X
such that

(I.76) o precedes all a;;

(L.77) for any other subobject o’ : W' — X, preceding all a;, a’ precedes
a.

Any two intersections are equivalent (in the sense above). We often write
N; X; for the intersection of the a;s. Dually we define a union of the a;s
as a subobject B : Y = X such that

(I.78) P follows all a;;
(I.79) any other subobject following all a; follows p.

Any two unions are equivalent. We often write |J; X; for the union of the
Qa;s.

A (decreasing) filtration of an object X of A is a sequence of subobjects
of X

D FOX o F'X 5 FPX 5

and we say that it is regular if N, FPX = 0 and U, FFX = X. We say that it
is finite if it is stationary on both sides: i.e. there exist po and p; such that
FPX = FPoX, for all p < pg, and FPX = FP'X, for all p > p;.

oo = FPoTIX — FPOYX 5 ... 5 FPIYX = FPYL L

A spectral sequence E = (EP"1, E™) (starting on page ro) is given by the
following pieces of data.

(1.80) For every r > ro, there is given a collection E, (called the r-th page)
of objects E2*1 € A, where p, q € Z.
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(1.81) There are given morphisms d2*? : E2*? — EP™47 such that

»q—r+1 4p,
dqu deqzo

where p,q € Z.

(1.82) If we denote H?4(E, ) = Kerd?*?/Im d?~ """ (the zeroth coho-
mology of the complex EZ**7~*"), there are given isomorphisms

ol : HP9(E,) - EL.

(1.83) For any p, g, there exists r* = r*(p, q) such that, for any r > r*, the

differentials d? 4l and d P vanish. In this® case, the morphisms

a4, identify all E2%, for r > r*.
Pd . pPd . b
BP9~ BP o F

rral T Epeiy Z 0
We denote this object by EXY.
(1.84) There are given a decreasing regular® filtration
...5 FPE" 5 FPHIE" 5 ...
on each E" and isomorphisms

pP4: ER - FPEP+q/FP+1EP+q_

We say that the spectral sequence E converges to (E"), or that (E") is the
limit of E, and write

EPY — EPY,
A way to think of the information extracted out of a spectral sequence
»n—
E‘fo P — g",

is that the objects E" are built up of extensions of the objects EZ" 7, which
are cohomologies of cohomologies of cohomologies of the complexes E;".

We can form the additive category of spectral sequences by defining
morphisms f : (EF'L,E") — (E/P%,E’") as collections of maps 7 :
EPT » E/P1 fm E"  E'", commuting with the structural morphisms
and compatible with filtrations.

1.8.1 Remark We notice that condition (I.83) is satisfied whenever the starting
page E,, has vanishing objects outside an area of the form p > po, g > qo
(or equivalently p < po,q < qo). In fact, if an object EZ’? = 0 vanishes
then all objects Effi = 0 vanish for k > 0. In this case, if we fix p and g,
as the page number increases we are bound to reach an r > r such that
the differential df~"7*""" starts from a zero object and d¥*? ends on a zero
object, hence they both vanish.
Moreover, in this particular case, we are assured that the filtrations
{FPE"}, are all finite.

The actual definition of a spectral sequence does not require the vanishing of any differential,
but introduces additional filtrations. Since it is common that a spectral sequence satisfies
condition (1.83), we prefer to give this simplified definition (as done in [GMo3]).

6 In the general definition the regularity assumption of the filtrations is not present either.

v
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We say that a spectral sequence E degenerates at page r* if all differentials
d? vanish, for r > r*. In such a case, ER? = E2? for all p, q.

1.8.2 THEOREM (THE GROTHENDIECK SPECTRAL SEQUENCE)
LetF: A — B, G: B — C betwo left exact functors and let 7 be a K* (G)-
injective subcategory. Assume A and B have enough injectives and assume
that F(Z4) c J, viz. any bounded below complex of injectives maps to an
element of J. Then, for any complex A" € D (A) there exists a spectral
sequence

(1.85) Ef? = RPG(RIF(A)) = RP*1(Go F)(A).
As a very special case we have the following useful spectral sequence.

1.8.3 COROLLARY
Let F : A — B be a left exact functor and let A have enough injectives.
Then, for any A" € D" (A), there exists a spectral sequence

(1.86) El? = RPE(HI(A')) = RPFIE(A).

Proof

It is precisely the spectral sequence (I.85), in which F = Id 4 and we relabel

G=F. v
Another useful spectral sequence is the following (see [Huyo6, REMARK

2.67]):

(1.87) EP? = RIF(A?) = RPTIE(A),

where F : A — B is left exact, A has enough injectives and A" € D" (A).

1.8.4 THEOREM
Let F : K" A - KB be a A-functor admitting a right localization RF :
D" A — D" B. Assume A has enough injectives.

(1.88) Suppose C is a thick subcategory of B, R'F(A) € CforallieZ
and A € A, and that there exists an n € Z, such that R’F(A) = 0 for
all j < nand A € A. Then RF factors through D¢ B.

~
N
N
N
N
N
N
N
N

DB

(1.89) Suppose RE(A) € D°B for all A € A, then RF factors through
D"B.
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Proof

Both follow from the spectral sequence (1.86). The first assertion is a
consequence of the thickness of C, which by definition implies that C is
abelian and closed under extensions. Let X' € D* .4 be a bounded below
complex. We need to show that H*(RF(X')) = R"F(X') € C. Consider
the spectral sequence R’ (H%(X')) = RP™I(X'). Now, H1(X') is an
object of A and by hypothesis E"? = RPF(H?(X')) € C, we have that
E? e C, forall r > 2, since C is closed under coholomogy of its complexes.
Hence EX? € C, and we recall that the E2? ~ FPEP*4/FPHIEP*9, where
FPE" is the filtration given by the spectral sequence. By our hypotheses
and by REMARK 1.8.1 the filtration of the limit E#*4 = RP*1(X") is finite,
say

Ep+q — FhEp+q 5.9 Fh+kEp+q =0,
and there exact sequences
0 — FPEPY s FPHIRPHT FP+1EP+4/FP+2EP+Q 0.

We claim that all FPE?*4 belong to C. But this is simply a consequence of
the finiteness of the filtration (which starts from 0 € C) and of the thickness
of C and of the fact that the quotients FP*'EP*4/FP*2EP*4 already belong
to C. Hence, R?*1(X") = EP*4 = F"EP*1 ¢ C, thus proving our claim.
For the second assertion one proceeds similarly, showing that for any
X' e D" A the complex RF(X') has bounded cohomology, i.e. R"F(X')
vanishes for large |n|. Again this is a consequence of the spectral sequence
(1.86). v
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In this chapter we present the essential results from algebraic geometry
that are needed for the sequel. We omit some of the proofs and refer
to the literature. As a reference we strongly advise [Huyo6], but also the
classic [Har66]. For the more standard material (viz. not involving derived
categories) we refer to [Liuo2] and of course [Hary7].

II.1 COHERENT SHEAVES

To avoid confusion with sheaf coholomogy H' (X, -) we use the notation
below. Given a complex of sheaves %" € C(Ox-Mod), on a ringed space
X, we write 5 (.F") for the i-th cohomology of the complex .%" (which
is again a sheaf).

We recall a few important facts about schemes that we need.

B1G THEOREM
Let (X, Ox) be a noetherian scheme. The following are true.

1. An Ox-module .7 is quasi-coherent if and only if for every open
affine subset U ¢ X of X, Z#(U)~ ~ F|U. The same holds for a
coherent sheaf 7 if we add the condition of #|U being finitely gen-
erated.

2. A direct sum of quasi-coherent Ox-modules is quasi-coherent.
3. A finite direct sum of coherent Ox-modules is coherent.
4. If F and & are (quasi-)coherent Ox-modules then so is F ®py Y.

5. If F is coherent and & is (quasi-)coherent then Homoy (F,9) is
(quasi-)coherent.

6. Let @ :.% — & be amorphism of (quasi-)coherent Ox-modules then
Ker ¢, Coker ¢, Im ¢ and Coim ¢, are (quasi-)coherent.

7. Let0 > F -G — A — 0 be an exact sequence of Ox-modules. If
two of them are (quasi-)coherent then so is the third.

8. QcohX and CohX are abelian subcategories of Ox-Mod. Further-
more:

o The category QcohX is a thick subcategory of Ox-Mod, the cat-
egory of sheaves of Ox-modules;
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o The category CohX is a thick subcategory of QcohX.
9. The category Ox-Mod has enough injectives.

10. The category QcohX has enough injectives. More precisely, every
quasi-coherent sheaf F admits an injection in a quasi-coherent sheaf
I, which is injective as an Ox-module.

Proof

For 1. through 7. see [Liuo2, THEOREMS 5.1.7, 5.1.11, 5.1.12], 8. is a conse-
quence of 2., 3., 5. and 6. For 9. see [Haryy, PrRorPosITION III.2.2]. For
10. see [Har66, THEOREM 11.7.18]. v

Convention From now onwards, all schemes are assumed to be noethe-
rian.

Notation For a scheme X we denote by D*X the derived category of
coherent sheaves D* CohX, where * = ub, +, —, b. Again for scheme X we
adopt the following conventions:
D; X = Dgeonx Ox-Mod
(complexes of sheaves with quasi-coherent cohomology),
DX = D¢onxQeohY

(complexes of quasi-coherent sheaves with coherent cohomology),

where as usual * = ub, +, —, b.

THEOREM
Let X be a scheme.

(IL1) The inclusion QcohX — Ox-Mod induces an equivalence

D*QcohX — D;.X
for + = +,b.
(IL.2) The inclusion CohX — QcohX induces an equivalence
D°X > DPX.

Proof
As a particular case of THEOREM 1.5.9 one has (IL.1). For (I1.2) see [Huyo6,
PROPOSITION 3.5]. o

II.2 A SELECTION OF DERIVED FUNCTORS

Following [Huyo6, SECTION 3.3] we discuss the derived versions of the
functors we employ in the sequel.

Convention From now onwards all schemes and morphisms are consid-
ered to be over a fixed field k. Given two schemes X, Y we write X x Y for
the product over k: X x5 Y.
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The general idea is to start with a given left (or right) exact functor
F: QcohX — B,

defined on quasi-coherent sheaves, and then to restrict the domain of its
derived version RF to the bounded derived category of coherent sheaves,
finally one uses THEOREMS [.8.4 and I1.1.4 to try and confine the codomain
of RF to a subcategory DZ B, for some thick subcategory C of B.
The first functor we treat is the global sections functor. Let X be a scheme. Sheaf Cohomology
The global sections functor

I'(X,-) =T : QcohX — k-Mod
F—TI(X,F)=F(X)
is left exact. Since Qcoh has enough injectives we obtain
RT : D*QcohX — D*k-Mod.

For a sheaf .%, the module R'T(.%) is denoted by H'(X,.%) and it is
called the i-th sheaf cohomology group of .. For an honest complex of
sheaves .7, the modules R’ (X, .% ") are classically called hypercohomology
groups, and again we denote them by H' (X, .#"). Since every complex of
vector spaces splits we have a non-canonical isomorphism

RI(7) = @PH (X, 7)[-i]
i
in D(k-Mod).
To restrict to the bounded subcategory we use the following theorem.

THEOREM (GROTHENDIECK)
Let .Z be a quasi-coherent sheaf on a noetherian scheme X. Then

H (X,.7)=0
for i >dimX.

Proof
See [Har77, THEOREM III.2.7]. v

Hence, by THEOREM 1.8.4 the following is well defined:
RT : D’QcohX — D"k-Mod.

The passage to the coherent realm has an additional property.

THEOREM
Let X be a proper scheme over a field k and let % be a coherent sheaf on X.
Then the cohomology groups H' (X, .7 ) have all finite dimension over k.

Proof
It is a straightforward consequence of THEOREM IL.2.5. v

Thus if X is proper over k we finally obtain
R : D°X - D°k-Mod".

We summarize the above discussion with a diagram.
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D" QcohX — 3, D*k-Mod

D°QcohX ------ » D’k-Mod
b~ X proper b £
D°CohX ------ > D°k-Mod

Where, given a left noetherian ring R, we denote by R-Mod" the thick
abelian subcategory of R-Mod whose objects are finitely generated mod-
ules. We use an analogous notation for right modules.

Direct Image We now move on to pushforwards. Let f : X - Y be a morphism of
schemes. The direct image (or pushforward or pushdown)

f+ : QcohX — QcohY
is a left exact functor which yields
Rf. : D"QcohX — D" QcohY.

Given a complex of quasi-coherent sheaves .7 on X, we define its i-th
higher direct image as R’ f,. (%), which by definition is just

A (RE(T))

the i-th cohomology sheaf of the complex Rf, (.%").
‘We now want to restrict to the bounded derived category.

II.2.4 THEOREM
Let f : X > Y be a morphism of noetherian schemes and let ¥ be a quasi-

coherent sheaf on X. Then the higher direct images R’ f..7 are trivial for
i>dimX.

Proof
It is a consequence of [Haryy, ProrosiTiON III.8.1] and of THEOREM

I1.2.2. The first theorem states that the sheaf R f,.% is none other than
the sheafification of the presheaf

V— H (f'V,.Z|f'V),
and using the second theorem we conclude. v
Thus the restriction of the derived pushdown becomes
Rf. : Dchth — Dchth.

To deal with coherent sheaves we use the following fact.

I1.2.5 THEOREM
Let f : X — Y be a proper morphism of schemes, where Y is noetherian.
Then, for any coherent sheaf .F, the higher direct images R’ f. (.7 are co-
herent. In particular f, : CohX — CohY is well-defined and left exact.
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Proof
See [Gro67, THEOREM I11.3.2.1 and COROLLAIRE I11.3.2.2]. v
In conclusion, for a proper morphism f, we have

Rf, : D°X — D°Y.

We summarize the above with a diagram.

Rf.
D*QcohX *f> D*QcohY

D CohX -2, DPCohY

Remark If f : X — Speck is the structural morphism, one notes that
the direct image functor is particularly simple. The category of quasi-
coherent sheaves over k is equivalent to the category of modules over
k. Through this equivalence the direct image functor corresponds to the
global sections functor, in other words:

(I1.3) Rf. =RT ®y O = H (X, -) ®k Ok.

Given two morphisms of schemes f : X - Yand g: Y — Z, we know
that (g o f)« = g« o f«. Therefore we have a morphism

(IL.4) R(gef)«=R(g.°f.) — Rg.oRf,

to ensure that it is in fact an isomorphism we use flasque (a.k.a. flabby)
sheaves, which form another class of f-injective objects in QcohX.

LEMMA

On a ringed space, any injective Ox-module is flasque. Any flasque sheaf
F on X is f,-acyclic for any morphism f : X - Y, ie. R'f,.% = 0 for
i > 0. Moreover f..7 is again flasque.

Proof
See [Huyo6, LEMMA 3.24]. v

Indeed the morphism (II.4) is an isomorphism.
Deriving inverse images (or pullbacks) presents no difficulty to us as we
only deal with flat morphisms.

DEFINITION/LEMMA

A morphism of schemes f : X — Y is flat if for every x € X the induced map
R Oy, f(x) = Ox,x is flat. If f is flat, then f* is an exact functor.

Proof

As a result of being left adjoint to the direct image functor f., the pullback

f* is in general right exact. Let f be a flat morphism and let .# — ¢ be
an injective morphism of sheaves on Y. Consider the complex

0— f*F — f'9
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and its localization at any x € X
(ILs) 0 — Ff(x) B0y Oxx = F(x) @0y Oxox

where the Oy f(,)-module structure on Oy, is precisely given from fi.
Note that (II.5) is obtained by tensoring the exact sequence

0 — Frx) — Y5(x)

with the flat module Ox ., hence (IL.5) is exact, which is enough to prove
that f* is exact. v

Thanks to the above lemma we do not need to search for an f*-projective
class of objects, since f* is automatically derivable and we denote L f*

simply by f*.

Remark In the simple case where f : X — Speclk is the structural mor-
phism the inverse image is quite simple. A quasi-coherent sheaf on k is
of the form V ®y Oy, where V is a k-vector space. The inverse image of
such sheaf is simply

(I1.6) f*(V K O]k) =V & Ox.
We have two well-defined bifunctors

Homy : (CohX)® x QcohX — QcohX
Homy : (CohX)® x CohX — CohX

which in turn can be extended to complexes and pass on to the homotopic
category:

Homy : (K" CohX)® x K"'QcohX — K" QcohX
Homyy : (K~ CohX)° x K*CohX — K*CohX

where we use the * to remind us that it is indeed a complex. After chasing
around the identifications among opposite categories and complexes one
notices that, given two complexes of sheaves .#" and ¢, one has

Homy(F,9") = @ Homx(F',9"™)
i
with differential given by
dnl.%’nm(ff",‘ﬁt#n) ((P) = (P °© dfg_} + (_l)ld;;-'z" ° (P

Remark Usually sZom" is defined as the complex

Hom™(F,9) = [ Hom(F',9"").
However, in our cases the sums and products over i are actually finite and
thus coincide.

Using the following lemma we may derive, obtaining

R #omy : (D™ (CohX))° x D*QcohX - D" QcohX
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LEMMA

Let .Z" be a bounded below complex of injective sheaves and let F be an-
other complex of sheaves. If F or " is acyclic then sCom (F ', 7") is
acyclic.

Proof
See [Har66, SECcTION IL.3]. v

To restrict to bounded complexes we make some further assumptions
on X. We assume X to be projective over k (and hence of finite dimension)
and regular.

LEMMA
IfX is regular and projective, then any bounded complex of coherent sheaves
is quasi-isomorphic to a bounded complex of locally free sheaves.

Proof

Since X is projective, every coherent sheaf is a quotient of a locally free
sheaf (see [Har77, COROLLARY II.5.18]). We now want to use LEMMA 1.5.2,
so we must prove that there exists a natural number d such that for any
exact sequence of coherent sheaves

O—)ﬂ—)%e—)%d

where the ;s are locally free, then .7 is also locally free. We fixd >> dim X.
Since being locally free can be verified on stalks, we just need to prove that
for any x € X the module .Z, is locally free. We recall that for any x € X,
dim Oy, = dim, X < dim X. Thus we reduce to the case in which

0-F->G;—»- > Gy

is an exact sequence of R-modules, where R is a noetherian regular local
ring with dim R < dim X and the G;s are free (and therefore projective)
modules.

First we notice that every projective module over R is free (see [Eis99,
THEOREM A3.2]). Let M be Coker(G,4_; — G,) and let P’ be a projective
resolution of F (which exists since R-Mod has enough projectives).

Hence, through ¢, we obtain a projective resolution of M, which starts
with the G;s and with the P~/s. We recall that the global dimension of
a ring R is the supremum of the lengths of all projective resolutions of
modules over R. We use the following facts:
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« If Ris regular local ring of dimension m, then the global dimension
of R is m (see [Eis99, COROLLARY 19.6]).

o If R is a ring with global dimension m, then for any projective
resolution P of any module M, the module Im(P~" — P~("-1) is
projective (see [Eisg9, EXERCISE A3.14]).

Thus there exists an integer k > 1 such that Im(Gy — Gyg,1) is projective,
and therefore free. Hence we have found an exact sequence

0—>F—>Q1—>—>Qr—>0

where the Q;s are free. We claim that it now follows that F is also free, we
use induction on 7.

If r = 1 then F is isomorphic to Q; and hence it is free. Assume it is true
for r — 1. Consider N = Ker(Q,—; - Q;) = Im(Q,_» » Q,_1). Since Q,
is projective, the sequence

0->N->Qm1~>Q,—0

splits, therefore N is a direct summand of a projective module, hence it is
projective and thus free. As a consequence we have an exact sequence

0-F-Q ~»>-—>Q,,—>N=-0

and, by the induction hypothesis, we finally have that F is a free module
over R. Y

We summarize with a diagram.

(D™ CohX)® x D*QcohX — 2™, D*QcohX
(D~ CohX)® x D*CohX - . D*CohX
(DPCohX)® x DPCohX - ~*°%_, pbCohX

One defines
Exti (F,9) = R AHom (F',9).
As a special case one has the derived dual of a complex .#" € D™ QcohX
(F)Y =R#om(.F',Ox) e D" QcohX.

Of course the case that is of most interest to us is when .% " is bounded
and coherent: one has

FZV e DPX

if X is regular.
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For tensor products we procede similarly as with local homs. One starts
from the functor

- ®oy - : Ox-Mod x Ox-Mod — Ox-Mod
which yields
Qo4 : KT Ox-Mod x K™ Ox-Mod — K~ Ox-Mod,
where

(F ®0, )" = B FP o, 91
p+q=n

with differential

_ qP q
d‘mw =d%. 1+ (-1)'1edg.

To derive the tensor product we first use flat sheaves.

LEMMA
Every Ox-module is a quotient of a flat Ox-module.

Proof
We recall that if .7 is a sheaf on an open subset U of X then its extension
by zero outside U is the sheafification of the presheaf

Vi S(V) ifvel,
0 otherwise.

We also recall the stalks of the extension of .¥ are .%y, on all x € U, and
vanish outside of U. Because of this last property, if we consider .%y to be
the extension by zero of the restriction Ox|U of the structure sheaf on U,
it is easy to check that .#y is a flat Ox-module.

Again, we consider a sheaf . on X. Let s € I'(U,,.?) be a section.
Consider the sheaf homomorphism

¢s: Fy, > S
induced by the presheaf morphism

(ps)v(\) =A-s|VifVc U,
(@s)v = 0 otherwise.

We notice that for all x € Uy, the germ s, lies in the image of (¢;)x-
The morphisms ¢, thus induce a morphism

F =@ I,
S

where s rangese through all the sections of ., which is clearly surjective
on stalks. Since the direct sum of flat sheaves is flat we have constructed a
surjective morphism from a flat sheaf onto .. v
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Since flat sheaves form (essentially by definition) the class ® o, -projective
sheaves we obtain

®%, : D™ (Ox-Mod) x D™ (Ox-Mod) — D™ (Ox-Mod).

Since the tensor product is right exact in both variables, we do not use
injective objects, thus we move on directly to coherent sheaves. We remind
that the tensor product of two coherent sheaves is again coherent. Again,
we recall that if X is projective then CohX has enough locally frees. If we
denote by £ the full subcategory of CohX consisting of locally free sheaves,
we have that the pair (£, £) is ®-projective. Hence we may derive on the
left the tensor product by resolving by locally free sheaves.

If we assume moreover X to be regular we recall that any bounded
complex of coherent sheaves is quasi-isomorphic to a bounded complex
of locally free sheaves. As a consequence we can restrict to bounded
complexes. We conclude with the usual diagram.

L

D~ (Ox-Mod) x D™ (Ox-Mod) —— > D™ (Ox-Mod)
e X projective bt
D CohXx D CohX ---------------- > D”CohX
b Y b X as above b
D°CohX x D°CohX ------------------ » D°X

II.3 USEFUL ISOMORPHISMS

There are some relationships among the derived functors above. Again
we assume X to be regular and projective over k. The simplest one we
encounter is the compatibility between inverse images and tensor products.

LEMMA
Let f : X — Y be a morphism of ringed spaces. If % and & are sheaves on
Y then there is an isomorphism

ffFef'9d=f(Fe9).
If Z is locally free then f* % is locally free.

Proof

The first statement is essentially due to the fact that the tensor product
commutes with colimits in the category of modules (see [KS9o, PrRoPOSI-
TON 2.3.5]). The second assertion is a straightforward consequence of the
following. By definition

ffOy = f*Oy @0, Ox =~ Ox

where f* is the left adjoint of f., when considering sheaves of abelian
groups and not just Oy-modules. v
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II.3 USEFUL ISOMORPHISMS

To define ®", on a projective scheme X, we used locally free sheaves. The
above lemma thus yields the isomorphism:

(IL7) et () — fr-e).
The second one we study is the projection formula.

LEMMA
Let f : X = Y be a morphism of ringed spaces and let F and & be sheaves
on X and Y respectively. If 4 is locally free then we have an isomorphism

f(F) G ~ (T ® fYD).

Proof
Using the unit and counit of the adjunction f* + f, we obtain the following
chains of morphisms

[T o4 —ff (f 7 )

f(f fu T ®f'Y)
—f (T ® D).

We now show that if ¢ is locally free then the composition of the above
maps is an isomrphism. Since the question is local, and we already have a
globally defined map, we suppose & = OF. The above map translates into

[T @0y = (fF)" — (ff 7))
— () = f T
~ f(F®OL) = f(F ®fO})

which is an isomorphism (it is essentially equivalent to saying that f* is
left adjoint to f.). oy

Again we recall that to define ®" (on a projective scheme) we used locally
free sheaves, therefore the following isomorphism is a consequence of the
above lemma:

(IL.8) Rf(-) 8" - — Rf(-8" f(-)).

Let us begin by recalling a lemma.

LEMMA
Flatness and properness are stable under base change.

Proof
See [Liuo2, PROPOSITION 4.3.3] and [Liuo2, PROPOSITION 3.3.16]. v

Consider a cartesian diagram

Xx, Y —— Y
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where f (and hence g) is proper. Using the inverse-direct image adjunction
we obtain a functorial morphism

U fe =5 gug*u’ fo = 9. (ug)* f
=g:(fv)" fu

* [k g*v*ﬁ *

=gV f fi — guv

where ¢ is the unit relative to g and § is the counit relative to f. Assume
moreover u (and consequently v) to be flat, and let .% be a quasi-coherent
sheaf on Y. Then [Liuo2, EXERCISE 1.16] yields the flat base change isomor-
phism
* *
U fo — guv

which passes on to the derived level
(IL9) u*Rf, — Rg.v*.

Remark A special case we will use later is the following. Consider the
diagram

Y—k

and an object F" ¢ D°X. Combining (II.3), (II.6) and (II.9) one obtains
(IL.10) Rq.p* 7 =u'Rf.7 =u"(H(X, ") ®k Ok)

=H (X,.%") &k Oy.
1.4 FOURIER-MUKAI TRANSFORMS

In this section we introduce the concept of Fourier-Mukai transform.
We do not delve deeply into the theory, we merely touch upon its definition
and discuss the case needed in the next chapter.

Let’s start with an informal discussion (cf. [Tho99, SEcTION 2]). Con-
sider an integrable function f € Z*(R", C) defined on R” with values in
the complex numbers. The Fourier transform of f

f:R">C
is defined as

(IL.11) fly) = -/]’R" fx)-e ¥ gy,

Let’s write the exponential as K so that (II.11) becomes

(IL12) J0) = [ () K p)dx.
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Instead of the exponential we might take any other suitable function K
in (I1.12); for example K € C.(R"” x R", C) (continuous with compact
support). We can abstract further by considering, instead of two copies of
R", any pair of reasonable’ measure spaces X and Y. Consequently, for
suitable f and K, we may define the function transform with kernel KC of

fas
(IL13) J0)= [ fx)-K(x y)dsx.

Since we wish to stress the dependence on the kernel we change notation
and use O (f) instead of f.
The product X x Y comes equipped with two projections: p and q.

XxY
/ X
X Y

Let’s introduce another two notations. Given a complex-valued function
f on X we define the pull-up by p as

P f(x,y) = fop(x,y) = f(x),

and given a complex-valued integrable function F on the product X x Y
we define the push-down by q as

4.F(y) = [ F(x.y)dx.

In other words the pull-up of a function f on X is simply a stack of copies
of f on the product, constant along Y; the push-down of a function F on
the product associates to every point y € Y the integral of F on the fiber
g '(y). With this last bit of notation in hand we may rewrite (I1.13) as

(IL14) O (f)=q.(p"f-K).

Of course we might as well have considered the pull-up by g and the
push-down by p, which gives the opposite transform

Dic(f) = p« (a"f - K).

Results concerning Fourier transforms may be expressed in this new
language. For example the inversion formula; for an £ function on R”
admitting an .#" Fourier transform let

g(x)=(i)nfwf(y%e“’"”dy

be the antitransform of f. Then the inversion formula states that f = g
almost everywhere, which immediately translates to

@), 0o Oic(f) = f almost everywhere,
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for appropriate kernels /C and H.

Coming back to sheaves, we formally transliterate the above definition
of transform into the setting of derived categories of coherent sheaves. Let
X and Y be two schemes, proper over k, and consider their product X x Y.
We remark that since the structural morphisms from X and Y to Speck
are flat, the projections p and q are also flat.

DEFINITION
Given an element # € D®(X x Y) we define the Fourier-Mukai transform
with kernel JZ to be the functor

@, : D’X — D°Y
F —> Rq. (Lp* 7 @- ).
A functor as such is sometimes called an integral transform, gaining the
full title of Fourier-Mukai only when it is an equivalence.

Remark Since we only deal with flat morphisms the definition of Fourier-
Mukai transform becomes

Rq. (p* 7 &" ).

Let us give at once an example. Consider a morphism f : X — Y. The
maps Idx and f uniquely determine a map

t=Idx xf: X =>XxY.

Let Or = 1. Ox be the direct image of the structure sheaf of X through
t (viz. it is the structure sheaf of the graph I'r of f). Consider now the
Fourier-Mukai transform with kernel Or,:

d)orf =Rq.(p*-o" Or,)
= Rq.(p*-®" 1.0x)
(projection formula) = Rg,Ri, (1 p*- ®" Ox)
(pr=1dx, qu= f) = Rf.
and the opposite transform
o, =Rp.(q"-8" Or))
(projection formula) = Rp,Ru, (1*¢*- ®" Ox)
(pr=1dx, qu=f) = f".

Thus they are simply the direct image and the inverse image through f.
As a special case we notice the following. Let X = Y and f = Idy, so that
O, is the structure sheaf of the diagonal, then

(IL15) Do, =Idpsy = Pp, -

To conclude we note that a Fourier-Mukai transform, being the compo-
sition of A-functors, is itself a A-functor.

For example we request the spaces to be o-finite, in order to be able to apply the Fubini-
Tonelli theorem (see [Rud87, THEOREM 8.8]).
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In this chapter we finally come to investigate the structure of CohlP,
the category of coherent sheaves on projective space. More precisely we
study D®(CohP), the bounded derived category of CohIP, by means of a
resolution of the structure sheaf of the diagonal. Applying the machinery
of Fourier-Mukai transforms we obtain two equivalences of DPIP with
simpler, more algebraic, triangulated categories.

Let P = IP(V) = ProjSym V" be the projective space associated with
an (n + 1)-dimensional vector space V over a field k. We write D for
D°(CohP). Let p and g be the projections

PxP

N

P P

from the product IP x IP onto the first and second factor respectively. Let
O = Op denote the structure sheaf of P, let Q! = Q]lP Jk be the sheaf
of differentials over k and let O, be the direct image of O through the
diagonal map (i.e. O, is the structure sheaf of the diagonal A c IP x P).
If # and ¢ are sheaves on PP, we define the exterior tensor product of #
and ¥ to be the sheaf on the product P x P

FrRY=p"F®q9°Y.

To ensure that we can employ the machinery developed in the last
chapter we make a few remarks (see [Liuo2]). The schemes P and P x P
are notherian, of finite dimension, projective over k, smooth and hence
regular. The structural morphism P — Speck is proper and flat, whence
it follows that the projections

p,q:PxP—TP

are also proper and flat. Thus we can apply all the results of the previous
chapter.
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III.1 A RESOLUTION FOR THE DIAGONAL

In this section we will construct a finite locally free resolution of the
structure sheaf of the diagonal O,. It is a special feature of projective space
that such a resolution exists. For the machinery of Koszul complexes we
refer to [FL85, IV§-2].

THEOREM (BEILINSON)
Consider the locally free sheaf

S =0(-1) = Q'(1)

on P x IP. There is a finite locally free resolution of the sheaf Op on P x PP,
given by

n

2
O—)/\y—>~~~—>/\¢5ﬂ—>¢§ﬂ—>O]PX]P—>OA—>O

Proof
We sketch a first proof and then give second proof.

We recall that O(-1) is the tautological bundle, whose fiber at a point
[ € P is [ itself, considered as a subspace of V. The sheaf Q'(1) is the dual
of 7 (-1), the tangent sheaf twisted by —1. Its fiber at I consists of the
linear maps from V to k vanishing on I. By pulling these two sheaves back,
via the two projections p and g, we obtain the sheaf ., whose fiber at
(I, 1) € P x P is the tensor product of I; with the space of linear maps
from V to k vanishing on /,.

We may therefore construct the evaluation morphism

e: % = Opxp

defined as (the k-linear extension of) the evaluation map

e(ve9)=9(v)

where v is an element of /; and ¢ vanishes on /,.

One observes at once that g1, ceases to be surjective if and only if
I, = . The image of € and the ideal sheaf of the diagonal A c P x P cut
out the same subspace. It remains to prove that they indeed determine
the same scheme. To do that, one works locally (se second proof below).
Therefore O, is the cokernel of €, and we have the exact sequence

€

S

OlPx]P OA 0

which in turn yields the Koszul complex

n

2
0—>/\§ﬂ—>-.-—>/\§ﬂ—>§ﬂ—€>(’)lpxlp—>(’)A—>0

where the map
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is given by
P -
sUA - Asg > 3 (<1 e(sp)si A AT A A sy
j=1

Since the diagonal has codimension # in IP x IP the above complex is exact.
We may therefore speak of a Koszul resolution.

Alternatively, we may proceed as follows. We fix an isomorphism of
V with k"*!, thus P becomes the Proj of a polynomial ring. We consider
three copies of IP all labeled with different variables:

P, = Projk[xo,...,x,]
P, = Projk[yo,..., ya]
P, = Projk[z, ..., 2]

and we consider the product IP, x IP, with projections

P, xP,
/ X
P, P,

Following the proof of [Hary7, THEOREM I1.8.13] let’s consider the Euler
sequence

0— Qp(1) — Op" — Op(1) — 0.

We want to take the first morphism on P, and the second morphism on
P, pull them back through g and p respectively to obtain the map below

(IIL.1) q"Qp, (1) > q"Op.' = Opip = p*Op;' > p*Op, (1)
which in turn can be tensored by p*Op  (~1) yielding a homomorphism

(I11.2) p*O]py(—l) ®Op,p q*Q]px (1) —> Opxp.

We claim that the image of (III.2) is the ideal sheaf determining the diago-
nal. To prove our claim we work on local coordinate patches.

Denote by e; the standard section (0,...,0,1,0,...,0) of O"*!. On
U = {x; # 0} we have a basis of I'(U, Qp_(1)) such that under the first
morphism in the Euler sequence the k-th basis element maps to

Xk
e — —¢€;
Xi

for k # i. On IP,, the second morphism of the Euler sequence is precisely
given by

ek [ — }}k.
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Thus, if we work on the coordinate patch U x V = {x; # 0, y; # 0}, the
morphism (III.1) maps the k-th basis element of the global sections of
q*Qp, (1) to

Xk Yk )i Xk

Y= Yi=Yi\ -~ )

x” J()’j Y x,-)
Tensoring by p*Op,(~1), as in (II1.2), we again obtain a basis of the sec-
tions over U x V of the first sheaf such that the k-th basis element maps
to

e Yi%k
Yio ViXi

(II1.3)

for k + i.

To prove our claim, that the image of (II1.2) is in fact the ideal sheaf of
the diagonal, we consider the third projective space IP, and the diagonal
map P, - IP, xIP,. Since we restricted our attention to U x V, we consider
U n V in P, which is simply

Zo Zn 20 Zn 20 Zn Zi
Speck|—,...,—,—,...,— [ =Speck|—,...,—, —|.
Zi Zi Z]' Z]' Zi Zi Zj

The diagonal map thus corresponds to

X0 Xn Yo Yn 20 Zn Zi
kl—...,— —,....,—=| —k|—,...,—, —
Xi Xi }/] )/J Zi Zi Zj

Xk Zk

ot

Xi Zi

zZ

Yk %k

Vi Zj

We now show that the kernel of the above surjective morphism is precisely
the ideal generated by the elements of the form (IIL3), hence proving
our claim. Call R the ideal generated by the elements of the form (IIL.3).
Since R maps to zero (by inspection) the above morphism passes onto a
morphism ¢ from the quotient ring

k(2. on  »]

Xi Xi~ Yj Vi
Q= R
For k # i we have the identies
Yk _JiXk
Vi ViXi

holding in Q. In the case k = j this yields

Vi yi¥i
Vi YjXi

Vi _ (xj)fl
Vi Xi

(I1L.4) 1=

thus
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in 9, and so

from which it follows that ¢ is an isomorphism. Hence our claim.
Taking the Koszul resolution associated with the morphism (IIL.2) we
conlude. oy

Let’s write the resolution again. We have a canonical identification

k k

A7 =N (O(-1) = Q' (1)) ~ O(-k) m Q¥ (k)
where the last isomorphism is a consequence of the following simple
algebraic lemma.

LEMMA
Let R be a ring, let M and N be free R-modules of finite rank. Assume
moreover M to have rank one. Then we have a natural isomorphism

r

AMeN)~M® & AN.
Proof
We define a map (as the k-linear extension of)
M® @ AN>(m®-®@m,)® (n A An,)
— (Mm@ m)A-A(men)e/\(MeN)

which is well-defined since M is of rank one. Clearly it is surjective and
therefore, being M and N free, an isomorphism. N

As a result, if we write ¥ for O(~k) ® Q¥ (k), the Koszul resolution
above becomes

0= LN L s P2 P P00y 0

so the complex .#” is quasi-isomorphic to the 0-complex O,. Thus the
two are isomorphic in the derived category D®(P x P).

III.2 FOURIER-MUKAI KERNELS

By writing ®x we denote the Fourier-Mukai transform with kernel
K, going from the first factor to the second; by @ we indicate the same
transform, but going in the opposite direction.

Let .#" be a bounded complex of coherent sheaves on IP. The quasi-
isomorphism .2 ~ O, thus gives

T 2 0o, (F) 2 0p(F)

and
F o W, (F) = Oy (F)

67
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isomorphisms which of course occur in D. One may view them as a
decomposition of the identity, since .Z" is an honest complex of sheaves,
and not simply a sheaf (cf. THEOREM IIL.2.1). So each sheaf .# can be
decomposed in terms of the O(—r) ® Q' (r)s (the cochains of .Z”).
Let us analyze each Fourier-Mukai transfrom ® ¢--. We have
(ILs) Oy (F)=Rq. (Lp*F &-27)
(flatness of p) ~ Rq. (p*F @ (p*O(-r) ® Q' (1)))
(locally freeness) ~ Rq. (p*-% (-r) ® ¢ Q" (r))
(projection formula) ~ Rg, p*.% (-r) ® Q' (r)
(flat base change) ~ RT (P,.% (-r)) 5, O ® Q'(r)
~H (P, (-r)) ®, Q" (r).

Similarly
(I11.6) 'y (F)=H (P, 7 ©Q'(r)) ® O(-r).

There is a striking similarity between (III.5) and (IIL.6) above and the
relationship between a basis of a vector space and its dual basis. Let’s
elaborate some more on this last point. Given a basis of a finite dimensional
vector space

Vis...>s V4

we know that there is a dual basis
v,.ovy
on the dual vector space, defined by the equations
vi(v;) = 8ij.

Any vector v can be expressed uniquely as a sum

d
v= A
j:l

and it is straightforward to check that ) is actually v} (v), in other words

d
(I1L.y) v= v/ (v)v;.
i

The Fourier-Mukai transforms above express a sort of duality between

the sheaves
0O,...,0(n)

and the sheaves
0,0'(1),...,Q"(n).

One would hope to obtain identities similar to (III.7) for coherent sheaves
on IP, as:

7= U P, F(-)) e V()

j=0

7= QH (P, 0 01() 0 O]
j=0
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Unfortunately the case is not so simple (but neither so dissimilar): sep-
arating the left and right hand sides above lie two spectral sequences’.

III.2.1 THEOREM
Given a coherent sheaf .7 on P there exist two spectral sequences:

_ F ifr+s=0;
s _ s ar r(_ >
Byt =H(P, 7 (r)) 8 Q7 (1) - { 0 otherwise;

F ifr+s=0;

7S _ 118 T —r(_
EM*=H'(P,Z Q7" (-r)) ® O(r) :{ 0 otherwise.

Proof (¢f. [Huyo6, PROPOSITION 8.28])
Both are a consequence of the spectral sequence
E* =R°F(A") = R™F(A)

for any bounded complex A". We only show the first case.
Let A’ be p*(.¥) ® £ and let F be q.. Therefore, using (I11.5),

RE(AT) ~ H' (P, Z(r)) ® Q" (~r).

Finally
R™E(A) =™ (Op (F))
= A" (Do, (F))
~ %T‘FS (5;)
| F ifr+s=0;
" | 0 otherwise
which concludes the proof. v

III.3 TRIANGULATED MACHINERY

II1.3.1 DEFINITION
Let K be a k-linear triangulated category.

o An object E € K is exceptional if

k ifl=0;
Homy (E, E[1]) = { 0 ({therwise.
o A sequence of objects
Ei,...,E,
is exceptional if

k ifl=0,i=j

Homk (E;, E;[I]) ={ 0 ifl#0,i=j;
0 ifi>].

Note that every E; is exceptional.

1 We also remark that using Postnikov systems one may view the sheaf .% on the left as an
iterated cone of the summands on the right. The idea is precisely the one employed in the
proof of THEOREM II1.3.2, when splitting the Koszul resolution into short exact sequences.
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o A sequence is full if it generates K (i.e. any full triangulated subcate-
gory containing the sequence is equivalent, via the inclusion, to K).

« A sequence is strong if

k ifl=0,i=j
HomK(Ei,Ej[l]):{O i}‘lﬂ)‘ j

The following theorem is of great importance and is fundamental for
the sections below.

111.3.2 THEOREM
The sheaves

O(-n),0(-n+1),...,0
form a strong full exceptional sequence in D°P.

Proof (cf. [Huyo6, COROLLARY 8.29])

Denote by E; the j-th term of the sequence {O(-n), O(-n +1),...,0},
thus

E;=0(j-n-1).
Let’s start by showing that the sequence is strong and exceptional.
Homp (E;, Ej[1]) = Homp (O(i -n-1),0(j - n-1)[1])
= Exthy (O(i—n-1),0(j - n-1))
~ R'Home (O(i —n-1),0(j-n-1))
~R'T(P,0(j-i))
= H'(P,0(j - 1))

N 0 ifl#0;
T Sym/TTVY ifl=0

which in particular shows that

k ifl=0&i=j
HomD(E"’Ef[lD:{ 0 ifl:O&i>j'

therefore the sequence is strong and exceptional. Let us now show that it
is indeed full. Let’s write the Koszul resolution of the diagonal again.

0> L > L7 Opep > Oy~ 0

We can split it up into short exact sequences
0o—— " — "M — Mgy ——0

0 —— My —— L ——n Mgy ——0

0 M, Opxp Oa 0
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which can be regarded as distinguished triangles in D. Let now .# ¢ D
be an element of the bounded derived category of CohlP. We notice that
Rp. and -®"q*ﬁ ", being exact functors, send distinguished triangles into
distinguished triangles. By applying -®"q*.%" first and Rp, second we
obtain distinguished triangles

A . 4 . 4 . 1
Yy (F) —— Oy (F) —— @) (F) ——
7 . / . / . 1
V', (F)—— Vyu(F) —— ¥, (F) ——

. . . +1
o, (F)—— Oy, (F) —— O (F) ——

of which the r-th row is

. (F)

P

D (F) H (P, Z ® Q" "(n-1)) ®K E;ni

a fact that follows from (II1.6).

Therefore @', (7") belongs to the triangulated category generated
by E; and E,, (E;, E;). By induction it follows that, for all r, (D'//(_W(f‘)
belongs to (Ey, ..., E,.1). In conclusion

F 2Ol (F) € (Epr...,Ept) = (O(=n),...,0).

for all complexes of sheaves .%" in the bounded derived category D°P.cs

COROLLARY
For all a € Z, the sequence

O(a),...,O(a+n)

is strong full and exceptional.

Proof
The sequence is strongly exceptional. Fullness follows from noticing that
-®O(a) is an exact auto-equivalence of D, for any a € Z. N

II1.4 THE FIRST EQUIVALENCE

Following [Bei78] we find that D°IP(V) is equivalent to a simple homo-
topy category of modules over the symmetric algebra of V.

LEMMA

Let C and D be two triangulated categories; let F : C — D be an exact
functor. Let {X;}; be a family of objects generating C and assume {FX;};
generates D. Assume moreover that F induces isomorphisms

Homc (X, X;[1]) -— Homp (FX;, FX;[1])

foralli,jand for all | € Z. Then F is an exact equivalence.
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Proof
Consider C’ the full subcategory of C whose objects are the Y such that

Homc (X;[1],Y) — Homp (EX;[1], FY)

is an isomorphism. We notice that C’ is additive, closed under shifts and
extensions therefore it is a full triangulated subcategory of C. Since C’ con-
tains {X;} it is equivalent via the inclusion to C. Let now D’ be the image
through F of C’; D’ is additive, closed under shifts and extensions. There-
fore D’ is a full triangulated subcategory of D containing {FX;} hence
equivalent via the inclusion to D. Considering the following commutative
diagram of functors

CLD

|, |

CIL)DI

yields that F is an equivalence. Since it is a general fact that a quasi-inverse
to a A-functor is also a A-functor we have our claim (see [Muro7, LEMMA
49]). v

Let S, be a graded k-algebra.

Se(—7) is the usual twist by —r of Serre (i.e. So(—r) is the free graded
S.-module with generator of degree r).

GrS.-Mod is the category of graded S,-modules with morphisms of de-
gree zero.

Mpo,1(Ss) is the full additive subcategory of GrS,-Mod whose objects
are modules isomorphic to finite direct sums of the So(—7)s, where
0<r<n.

Kl[’o)n] (Se) is the homotopic category of bounded complexes of
M [0,n] (SO ) .

Finally, we fix a k-vector space V of dimension 7 + 1 and write M(Sym)

and M(A\) for Mo, ,,1(Sym® V¥) and Mg, (A® V) respectively; we write

K(Sym) and K(A) for Kt[’o,n] (Sym® VY) and Kfo,n] (A® V) respectively.
We now refine the first part of the proof of THEOREM IIL.3.2.

LEmMMA
We have isomorphisms

Home (O(-i),O(-j)) = Sym' (V")

where composition of sheaf homomorphisms corresponds to multiplication
in Sym® VY.

Proof
This is a direct consequence of [Hary7, PRoPosITION I1.5.13]. v
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Using the preceding lemma we can define an additive functor
F:M(Sym) — CohP

such that F (Sym® VV(-r)) = O(~r). Passing to the homotopic category
and composing on the left with the quotient functor we obtain

F:K(Sym) — D°P.

THEOREM (BEILINSON)
The functor F defined above is an exact equivalence.

Proof
One only needs to check that F lies in the setting of LEMMa I1I.4.1, which
is straightforward. v

We also notice that there are ‘dual’ statements, involving the exterior
algebra (as opposed to the symmetric algebra which we’ve just employed).
We only state them.

LEMMA
There are isomorphisms

A . J=i
Homo (Q'(i), @/ (j)) = AV

where composition of sheaf homomorphisms corresponds to multiplication
inA\*V.
Therefore we may define the functors

F': M(/\) - CohP

F :K(/\) - D°P
such that F'(A®* V(-r)) = Q'(r). One also has the following lemma.

LEmMMmA
For I > 0 the following holds.

Exto (Q'(i), /() = 0.
As a consequence have the following result, analogous to (and with analo-
gous proof of) THEOREM II1.3.2.

THEOREM
The sequence

0,0'(1),...,Q"(n)
is strong full and exceptional.
In conclusion we obtain the following theorem.

THEOREM (BEILINSON)
The functor ¥’ constructed above is an exact equivalence.



74

III.5.1

II1.5.2

BEILINSON’S THEOREM

III.5 THE SECOND EQUIVALENCE

We now relate D?CohP to another triangulated category. We skate over
some technical details and refer to [Crao8, SEcTION 6] for full proofs.

Recall that a ring R has finite global dimension if there is an integer d
such that any module admits a projective resolution of length less than d.

DEFINITION
Let X be projective over k and regular. Let

T=P 7
be a coherent sheaf on X. Consider the following properties.
T1 The k-algebra R = Endx (T, T) has finite global dimension.
T2 The modules Extk (T, T) vanish, for | > 0.
T3 'The sheaves F; generate D°CohX.

We say that T is a partial tilting sheaf if it satisfies T1 and T2. The sheaf T
is a tilting sheaf if it satisfies T1 through T3.

The following are tilting sheaves on P.

T=EOp(i+a), forafixed acZ;

i=0
T =P Qp(i).
i=0

For the theorem that follows below we need a lemma.

LEMMA
Let K be a triangulated category and let <7 be a collection of objects which
generates K. IfE € K is an object of K such that

(1IL.8) Hom(A,E[k]) =0, forallk € Z;
forall A e o/, thenE = 0.

Proof

Let K’ be the full subcategory consisting of all objects satisfying (IIL8).
Our assumptions imply that K’ 5 o7, and K’ is obviously closed under
direct sums and translations. If A - B - C - TAisad.t. with A,B e K’
then, being Hom(-, E[k]) cohomological, we obtain an exact sequence

0 = Hom(TA, E[k]) -» Hom(C, E[k]) - Hom(B,E[k]) =0

and as a result Hom(C, E[k]) = 0 for all k € Z. Thus K’ is a triangulated
subcategory containing .27, therefore it is equivalent to the whole K. As a
consequence E is isomorphic to an object of K’ and thus Hom(E, E) = 0,
which implies that E = 0. RS

The following result is due independently to Baer and Bondal ([Bae88],
[Bon89]).
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II1.5.3 THEOREM (BAER-BONDAL)

Let T be a tilting sheaf. Then the following functors are mutually quasi-
inverses of each other.

RHomx (T, -) : D°CohlP - D’Mod®-R
- ®% T : D’Modf-R - D°CohP.

Hence the bounded derived category of coherent sheaves on IP is equivalent
to the bounded derived category of right finitely generated R-modules.

Sketch of Proof
One starts with the functors

F = Homx(T, -) : QcohX — Mod-R,
G=-® T: Mod-R — QcohX.

Given a sheaf .7, F(.#) = Homx (T, .%# ) becomes a right R-module by
precomposition. For every open subset U c X of X, T(U) itself is a left R-
module. Thus, given a right R-module M, one can form the tensor product
M ®gr T(U) of M and T(U) over R. We then define G(M) = M ®x T to
be the sheafification of the presheaf

U — M ey T(U).

One sees that F and G are respectively left and right exact.
Since QcohX has enough injectives we may derive F on the right, which
gives

RF : D°CohX — D*Mod-R

when restricted to bounded complexes of coherent sheaves. Given a co-
herent sheaf .%, one shows that the cohomology modules

R'F(Z) = Extk (T, .%)

vanish for big |/| (and this is a consequence of the regularity of X and the
local-to-global spectral sequence for Ext) and are finitely generated. As a
consequence we can restrict the codomain of RF.

RF : D’CohX — D®Mod-R.

On the other hand the category Mod-R has enough projectives, therefore
G can be derived on the left. One shows that if we start with a bounded
complex of finitely generated modules M, the cohomology sheaves

A7 (M ®% T) = Fort (M, T)

vanish for big |!| (as a result of R having finite global dimension) and are
coherent. Hence we have a well-defined functor

LG : D’Mod’-R —> D°CohX.
Since T satisfies T2 we have

RF o LG(R) = RF (R ®% T) = RHomy (T, T) = Homx (T, T) = R.
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This identity is the key ingredient. We want to show that LG fully faithful
and essentilly surjective, and thus an equivalence. Let’s assume for now
that the above identity RF o LG(M') = M is true for any M in D®Mod'-R.
The functor LG is then fully faithful.

Let & be an element of D®(CohX) such that RF(&") = 0. Then, if
TzYe7,

0 = RF(&") = RHom(T, &) 2 RHom(.¥, &) ® RHom(.7,&").
In particular, for any direct summand .7 of T, we have
0 =R"Hom(7,&") = Homp(xy (7, & [k]),

and, since T satisfies T3 and applying LEmMma (II1.5.2), we conclude that
& =0.

Now;, let .7 be a bounded complex of coherent sheaves and let E" be
one of its resolutions by locally frees. We have a map LG(RF(E')) - E’
defined as follows: LG(RF(E")) is the sheafification of the presheaf

U — Hom (T, E") ®% T(U)

and by evaluation we define a morphism of presheaves which is then
carried over to a morphism £ : LG(RF(E’)) — E". Taking cones, we have
adt

LG(RE(E)) - B — % 5 .
Since RF is a A-functor we obtain another d.t.
RE(LG(RE(E))) o RE(E') — RE(%) 1>

where, since RF o LG is the identity, the first object is just RF(E") and one
can check that RF(§) is the identity, which is an isomorphism. Therefore,
by LEMMA L.2.14, RE(%) = 0, and thus € = 0. Again, by LEMMA 1.2.14,
£ is an isomorphism, hence E’ lies in the essential image of LG, hence
proving that LG is essentially surjective.

Thus it only remains to prove that the identity RF o LG(R) = R can be
extended to the whole of D°Mod"-R. It is obviously true that it holds for
any free module. If we prove that it furthermore holds for any projective
module of finite rank then, since R has finite global dimension, it will hold
for any bounded complex of finitely generated modules. We use the fact
(see [Crao8]) that the projectives of R have a very simple form: they all
come from direct summands of T, under the functor F. If T ~ T} @ T,, we
call R; = Hom(T, T;), which is a direct summand of R, and thus projective.
We want to show that LG(R;) = G(R;) = Tj. Using the evaluation map
constructed above we get a sheaf homomorphism

Rj ®RT—>Tj,

and we want to show that it is in fact an isomorphism. Consider the
endomorphisms 1; of T, defined as being the identity on T; and zero on
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the other direct summand. This endomorphism acts on R; ®g T. Take an
element r; ® (t; + t;):

r,-®t]-:ri®1j-(ti+tj):ri-1j®(ti+tj):Sijri®(t,-+t]-),

thus R; ®g T = T;. Since any projective is of the form R; above, we have
RFOLG(R]) :RF(T]):R] Qv
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