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ABSTRACT

A classical theorem by Bĕılinson, regarding the bounded derived cate-

gory of coherent sheaves on projective space, is proved. In the first chapter

we collect some results from homological algebra. In the second chap-

ter we apply these results in the context of Algebraic Geometry. In the

third chapter we finally come to the main theorems. We prove three

equivalences ofDb(CohPn) with other, somewhat simpler, triangulated
categories, introducing on the way the concept of tilting sheaves.

We suggest the reader to start with C III, and use the first two

chapters as a reference.
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IHOMOLOGICAL ALGEBRA - A QUICK TOUR

C

I. An Idea 
I. Abelian and Triangulated Categories 
I. Localizations 
I. Derived Categories 
I. Resolutions 
I. Derived Functors 
I. Bifunctors 
I. Spectral Sequences 

Here we give an introduction to triangulated and derived categories

very much in the spirit of the first chapter of [KS]. We omit some of the

proofs and refer to the literature. To get a hold of the ideas behind these

topics we suggest [�o], a survey which draws inspiration both from

the topological and algebro-geometric point of view. For a truly extensive

treatment, much beyond the scope of this thesis, one may consult [KS].

Other references we keep in mind are [Huy] (especially for the purpose

of this thesis), the classic [Har], [GM] and the last chapter of [Wei].

We assume familiarity with abelian categories and with the language of

spectral sequences.

We deliberately disregard set-theoretical problems, in particular we

never distinguish between small and big categories. A way to overcome

these difficulties is to use arguments involving universes, as done for exam-
ple in [KS]. Quoting [GM]:

We will always assume, whenever necessary, that all required

hygiene regulations are obeyed.

.  

Let us sketch the idea behind derived categories. Consider the following

setting. LetA and B be abelian categories and let

F ∶ A→ B

be a le� exact functor. Suppose moreover that A has enough injectives.
One classically defines the right derived functors of F

R
i
F ∶ A→ B

as follows. For each object X ∈ A one picks an injective resolution I⋅(X)
of X, which is an exact sequence

→ X → I(X)→ I(X)→ ⋯.
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�en R iF(X) is defined to be the i-th cohomology of the complex

F(I⋅(X)) ∶ ⋯→ → F(I(X))→ F(I(X))→ ⋯.

Similarly one defines le� derived functors. One proves that, up to iso-
morphism, the definition of the derived functor does not depend on the

resolutions we’ve chosen. Furthermore, to compute R iF(X)we could also
have chosen a resolution J⋅, made up of F-acyclic objects (where acyclic
means that all higher derived functors vanish).

As any object X ofA can be treated as a -complex, viz. a complex

⋯→ → X → → ⋯

where X sits in degree zero, one notices that a resolution I⋅ of X is nothing
but a quasi-isomorphism between X, regarded as a complex, and a complex
I⋅.

�us what one does to define derived functors is simply to identify

an object X ofA with a complex I⋅, quasi-isomorphic to it and made up
of acyclic objects. What the derived category does is precisely this: it

identifies any two quasi-isomorphic complexes, thereby identifying any

object (seen as a -complex) with its resolutions.

�ere is also another reason to introduce derived categories.�e func-

tors R iF are defined as the cohomology of some complex F(I⋅). When
taking cohomology we lose information encoded in the original complex

F(I⋅). Because of this, one wishes to redefine the derived functors. On the
level of derived categories one defines the (total) right derived functor RF
of F, which takes complexes inA and gives complexes in B.�e cohomol-
ogy objects ofRF are the previously denifed classical derived functors R iF.

Hence, when using the derived functor RF, one ends up with complexes,
which retain more information than their cohomologies. One might say

(with thanks to F. Tonini and apologies to [�o]) that derived categories

are constructed under the motto

Cohomology: good.

Complexes: way better.

Before giving precise statements we sketch the definition of the derived

category. One starts with a given abelian category A, from which theDerived Categories
category C(A) of complexes ofA can be constructed. Let X⋅ , Y⋅ ∈ C(A)
be two complexes and let

s ∶ X⋅ → Y⋅

be a quasi-isomorphism. Although, by definition, s is an isomorphism on
cohomology, an inverse s− needn’t exist. In order to identify X⋅ and Y⋅
we put in by hand an inverse s−. Namely, if S = Qis is the class of quasi-
isomorphisms, what we want is to localize the category C(A) with respect
to S : we are looking for the smallest categoryD(A), containing C(A), in
which all elements of S are invertible.�ere is a precise categorical notion
for the construction above. If C is category and S is a class of morphisms
then a localization of C by S is a category CS together with a functor

Q ∶ CÐ→ CS

called the quotient functor, such that:
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• For any s ∈ S , Q(s) is an isomorphism in CS ;

• For any other category D and any other functor

F ∶ CÐ→ D

such that F(s) is an isomorphism for any s ∈ S , then F factors
uniquely through Q. In other words there exists a unique functor

FS ∶ CS Ð→ D

such that F = FS ○Q.

�us we define the derived categoryD(A) to be the localization of C(A)
with respect to Qis, the class of quasi-isomorphisms.
Let’s turn to derived functors. Suppose we are given a functor Derived Functors

F ∶ AÐ→ B

between two abelian categories.�ere is an obvious extension of F to the

category of complexes:

C(F) ∶ C(A)Ð→ C(B)

which we still denote by F. Let us write Q for both the quotient functors

to the derived categories and consider

F
′ = Q ○ F ∶ C(A)Ð→ D(B).

If F is an exact functor then it commutes with homology and thus sends

quasi-isomorphisms into quasi-isomorphisms, namely: F(s) ∈ Qis, for
any s ∈ Qis.�erefore, for any s ∈ Qis, F′(s) = QF(s) is an isomorphism.
Hence F′ admits a factorization, which we still denote by F,

F ∶ D(A)Ð→ D(B),

viz. the following diagram can be completed to a commutative square.

C(A) C(B)

D(A) D(B)

Q Q

F

Suppose now we are given a functor F, which is only le� (or right) exact.
It is no longer true in general that F extends to the derived category as

before.�e right and le� derived functors are an approximation of this

desired extension. �eir definition is of rather technical nature, but in

most cases of interest it is easy to compute (from a theoretical point of

view). One has in fact various results (the first of which is T I..)

which when applied to derived categories roughly amount to saying that:

given the existence of a big enough subcategory of F-acyclic objects, the

derived functor RF can be computed by resolving by acyclics and then
applying F.
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Unfortunately the derived category of an abelian category is in generalStructure of the
Derived Category not itself abelian. It is however additive and it posses some additional struc-

ture: that of a triangulated category. In order to recover this last structure
we break down the construction of the derived category into two steps.

First: from A we build C(A), the category of complexes. Second: we
defineK(A) as the category whose objects are complexes ofA and whose
morphisms are morphisms of complexes modulo homotopy. It turns out

that K(A) is a triangulated category, which is what gives this same struc-
ture on the derived category. Finally we defineD(A) as the localization of
K(A) with respect to quasi-isomorphisms.�e two definitions ofD(A)
coincide (see [GM]).

.    

Let’s start with a category A. We say that A is k-linear (for a fixedk-linear Categories
commutative ring k) if every Hom-set is endowed with the structure of a

k-module such that composition ○ is bilinear. A k-linear functor between
two k-linear categories A and B is a functor F ∶ A → B such that the
natural map

HomA(X, Y)Ð→ HomB(FX, FY)

is k-linear for all objects X, Y ∈ A. A full k-linear subcategory is a full
subcategory B such that the inclusion functor is k-linear.
A k-additive category is a k-linear categoryA with a zero object andAdditive Categories

satisfying

Ab1 For any two objects X, Y ∈ A there exists a third object (the sum of
X and Y) X ⊕ Y and four morphisms

X
ιXÐ→ X ⊕ Y ιY←Ð Y

X
pX←Ð X ⊕ Y pYÐ→ Y

such that

pY ιX = ,(I.)

pX ιY = ,
pX ιX = IdX ,
pY ιY = IdY ,

ιXpX + ιYpY = IdX⊕Y .

One immediately notices the following.

I.. L
LetA, X and Y be as above.�en the squares

X ⊕ Y Y

X 

pY

pX

 Y

X X ⊕ Y
ιX

ιY
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are respectively cartesian and cocartesian.�erefore (X⊕Y, pX , pY) is the
product of X and Y and (X ⊕ Y, ιX , ιY) is the coproduct of X and Y.

We take a moment to establish some notation. In an arbitrary category, Products and
Coproductsif f ∶W → X and  ∶W → Y are two morphisms, we denote by

f ×  = ( f
 ) ∶W Ð→ X × Y

the induced map fromW to the product X×Y (assuming it exists). Dually,
if h ∶ X → Z and k ∶ Y → Z are two arrows, we denote by

h ∐ k = (h, k) ∶ X ∐ Y Ð→ Z

(and sometimes h ⊕ k) the induced map from the coproduct (assuming
it exists) to Z. Given four objects X , X and Y , Y and four morphisms

f i j ∶ X i → Yj , there are two ways to obtain a map X ∐ X → Y × Y.�e
first is

f  = ( f × f) ∐ ( f × f)
and the second is

f  = ( f ∐ f) × ( f ∐ f).

�anks to the universal properties of products and coproducts, the two

coincide and we o�en employ the notation

f  = f  = ( f f
f f

) .

From now on we drop the prefix k- and speak of linear (or pre-additive)
and additive (and later abelian) categories. It is useful to observe that ifA
is additive then the opposite categoryA○ is also additive. Also, if F is an
additive functor, then F(X ⊕ Y) ≃ FX ⊕ FY.
A complex inA is a sequence of objects X⋅ = (Xn)n∈Z with maps, called Complexes

differentials, (dnX ∶ Xn → Xn+)n between them, represented by

X
⋅ ∶ ⋯→ Xn− → Xn → Xn+ → ⋯,

such that the composition of any two consecutive maps is zero. A mor-
phism of complexes is a collection of maps ( f n ∶ Xn → Yn)n

⋯ Xn− Xn Xn+ ⋯

⋯ Yn− Yn Yn+ ⋯

dn−
X dn

X

dn−
Y dn

Y

f n− f n f n+

such that

dnY f
n = f n+dnX

for all n ∈ Z.�us complexes form a categoryC(A), and it is easy to check
that it is additive. For example, if X⋅, Y⋅ are two complexes then their sum
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is given by the complex (Xn⊕Yn)n , with differentials (dnX⊕dnY)n . WemayBounded Complexes
also consider the full additive subcategories C∗(A), where ∗ = ub,+,−, b:

ObCub(A) = C(A) (unbounded complexes) ,
ObC+(A) = {X⋅ ∣Xn =  for n ≪ } (bounded below) ,
ObC−(A) = {X⋅ ∣Xn =  for n ≫ } (bounded above) ,
ObCb(A) = {X⋅ ∣Xn =  for ∣n∣ ≫ } (bounded).

We o�en omit to write Ob, simply using X ∈ A to mean that X is an object
of the categoryA. If F ∶ A→ B is additive, there is an obvious extension
of F to an additive functor C∗(F) ∶ C∗(A) → C∗(B), for ∗ = ub,+,−, b,
which we sometimes denote simply by F.

Amorphism of complexes f is null homotopic if there exists a collectionHomotopy
of maps (sn ∶ Xn → Yn−)n

⋯ Xn− Xn Xn+ ⋯

⋯ Yn− Yn Yn+ ⋯

dn−
X dn

X

dn−
Y dn

Y

sn sn+

such that

dn−Y sn + sn+dnX = f n

for all n ∈ Z. Two morphisms f ,  are homotopic, and we write f ∼ ,
if f −  is null homotopic. We denote by Ht(X⋅ , Y⋅) the submodule of
Hom(X⋅ , Y⋅) consisting of null homotopic maps. Homotopy is compatible
with composition, in the sense that if f ∼ f ′ and  ∼ ′ then  f ∼ ′ f ′
(when composition makes sense).�us we may form the categoryK(A),
along with the subcategoriesK∗(A), as follows.

ObK(A) = ObC(A)

HomK(A)(X⋅ , Y⋅) =
HomC(A)(X⋅ , Y⋅)
Ht(X⋅ , Y⋅) .

�e categoriesK∗(A) are also additive. We say that two complexes X⋅ and
Y⋅ are homotopy equivalent if they are isomorphic in K, viz. there exist
two morphisms in C, f ∶ X⋅ → Y⋅ and  ∶ Y⋅ → X⋅, such that  f ∼ IdX⋅
and f  ∼ IdY⋅ . One also notices that if F ∶ A → B is additive and f is
null homotopic, then F( f ) is null homotopic.�erefore, the extensions
C∗(F) pass on to the homotopy category yielding functors K∗(F), for
∗ = ub,+,−, b, which again we sometimes denote simply by F. , then if f
is null homotopic

Let k ∈ Z be an integer, we define the shi� by k of a complex X⋅ as theShi�s
complex

(X⋅[k]n = Xk+n)n ,

with differential

(dnX⋅[k] = (−)kdn+kX⋅ )n .
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We can also shi� morphisms with the rule: ( f [k]n = f k+n)n . Hence the
shi� (also called translation) [k] is an additive automorphism of C∗(A)
and passes on to K∗(A), for ∗ = ub,+,−, b. We also notice that for any
two integers h, k ∈ Z we have [h + k] = [h] ○ [k]. We sometimes use T
to denote the shi� by one. We now pause our discussion of complexes to

introduce abelian categories.

Let now A be an additive category. We define the kernel Ker f of a Abelian Categories
morphism f ∶ X → Y to be the equalizer of the two parallel arrows

f ,  ∶ X ⇉ Y.

Equivalently the kernel might be defined as an object K together with

a morphism K → X, satisfying the universal property visualized by the
following commutative diagram.

X Y

K 

W

f

where the dashed arrow stands for exists unique. Dually one defines the
cokernel Coker f of f as the coequalizer of the two parallel arrows

f ,  ∶ X ⇉ Y.

Dually, the cokernel may be defined as a kernel in the opposite category,

thus satisfying the universal property expressed by the opposite of the dia-

gram above. We notice that Ker f ≃ Ker(− f ) and Coker f ≃ Coker(− f ),
for all morphisms f . As a consequence of the definitions the map Ker f ↪
X is a monomorphism and Y ↠ Coker f is an epimorphism. We then
define the image Im f of f as Ker(Y↠ Coker f ) and the coimage Coim f
of f as Coker(Ker f ↪ X). �ere is a natural map (when the objects
involved exist)

Ker f X Y Coker f

Coim f Im f

f

constructed as follows.�e morphism X → Y → Coker f is zero, hence
it must factor through Im f . In turn the map Ker f → X → Im f is zero
so we obtain an arrow Coim f → Im f . Dually one obtains another arrow
Coim f → Im f by observing that Ker f → X → Y is zero.�e two maps
coincide as a consequence of the universal properties satisfied by kernels

and cokernels.

We say thatA is abelian if it satisfies
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Ab2 For any morphism f , the kernel and cokernel of f exist. Moreover
the natural map Coim f → Im f is an isomorphism.

We remark that ifA is abelian thenA○ is also abelian.
Let A be an abelian category. As a consequence of Ab2 we have that

a morphism f in A is: a monomorphism if and only Ker f = ; it is an
epimorphism if and only if Coker f = ; it is an isomorphism if and only
if Ker f =  = Coker f .
To define the cohomology of a complex the following lemma is useful.Cohomology

I.. L
Let f ∶ X → Y and  ∶ Y → Z be two morphisms.

• If  is a monomorphism then Ker  f ∼ Ker f . Dually if f is an epi-
morphism then Coker  f ∼ Coker .

• IfW ↪ X is a monomorphism such thatW ↪ X → Y is zero, then
the induced map W ↪ Ker f is also a monomorphism. Dually if
Y ↠ Z is an epimorphism such that X → Y ↠ Z is zero, then the
induced map Coker f ↠ Z is also an epimorphism.

Given two consecutive morphisms f ∶ X → Y and  ∶ Y → Z such that
 f =  we say that X → Y → Z is a complex and we identify it with the
sequence

⋯→ → X → Y → Z → → ⋯

where Y sits in degree zero, which is a complex in the sense of our earlier

definition.

Given a complex

X Y Z
f 

we form the diagram

Im f Ker 

X Y Z

Coker f Coim 

f 

Since  f is zero, Im f → Y → Z is zero and so Im f → Y factors through
Ker , yielding the monomorphism φ ∶ Im f ↪ Ker . Dually we obtain a
factorization of Y → Coim  through an epimorphism ψ ∶ Y↠ Coim .
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Im f Ker  Cokerφ

X Y Z

Kerψ Coker f Coim 

f 

φ

ψ

We want to show that Kerψ ≃ Cokerφ. First we notice that

Cokerφ = Coker(Im f → Ker ) ≃ Coker(X → Ker )

and

Kerψ = Ker(Coker f → Coim ) ≃ Ker(Coker f → Z).

Let now u be the composition Ker  → Y → Coker f . Since Im f →
Y → Coker f is zero we obtain a morphism Im → Keru. And since
Keru → Coker f is zero we obtain another morphism Keru → Im f .
From the universal properties of kernels it follows that Im→ Keru → Im f
is the identity and also Keru → Im f → Keru is the identity. �us we
have an isomorphism Keru ≃ Im f . Dually we obtain an isomorphism
Coim  ≃ Cokeru. Hence

Coker(X → Ker ) ≃ Cokerφ(I.)

= Coker(Im f → Ker )
≃ Coker(Keru → Ker )
≃ Coimu
≃ Imu
≃ Ker(Coker f → Cokeru)
≃ Ker(Coker f → Coim )
= Kerψ

≃ Ker(Coker f → Z).

I.. D
Let X → Y → Z be a complex as above.

• We define its cohomology

H(X → Y → Z)

to be one of the isomorphic objects in (I.). For example

H(X → Y → Z) = Coker(Im f → Ker )

to fix our ideas.

• We say that it is an exact sequence if its cohomology vanishes

H(X → Y → Z) = .
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Given a long complex

X
⋅ ∶ ⋯→ Xn− → Xn → Xn+ → ⋯

we define its n-th cohomology Hn(X⋅) to be

H(Xn− → Xn → Xn+),

and we say that X⋅ is a long exact sequence or an acyclic complex if all its
coholomogies vanish, viz. Hn(X⋅) = , for all n ∈ Z.

Notice that Hn(X⋅[k]) = Hn+k(X⋅). We also notice that given complex
X → Y → Z, the cohomology of the opposite complex in the opposite
category is the opposite of the cohomology of the original complex, namely

H(Z○ → Y○ → X○) = (H(X → Y → Z))○ .

A sequence → X → Y is exact if and only if X → Y is a monomorphism;Exact Sequences
a sequence X → Y →  is exact if and only if X → Y is an epimorphism. A
complex

Ð→ X fÐ→ Y Ð→ Z Ð→ 

is exact if and only if f is a monomorphism,  is an epimorphism and
Ker  ≃ Im f . In such cases we speak of short exact sequences. Any mor-
phism f ∶ X → Y may be decomposed into short exact sequences.

→ Ker f → X → Coim f → 
→ Im f → Y → Coker f → .

An additive functor F ∶ A→ B between two abelian categories is:
• le� exact if for any exact sequence

→ X → Y → Z

the sequence

→ FX → FY → FZ

is exact;

• right exact if for any exact sequence

X → Y → Z → 

the sequence

FX → FY → FZ → 

is exact;

• exact if it is both le� and right exact, or equivalently if for any exact
sequence

→ X → Y → Z → 

the sequence

→ FX → FY → FZ → 

is exact.
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I.. Remark Given an object X of a k-abelian categoryA, the functors

HomA(X, -) ∶ A→ k-Mod

HomA(-, X) ∶ A○ → k-Mod

are both le� exact.

Our main example of an abelian category is R-Mod, the category of le� �e Embedding
�eoremmodules over a ring R with linear maps as arrows. Many of the proofs in

R-Mod o�en involve the chasing of elements in some diagram. In order
to be able to diagram chase in an arbitrary abelian category A, one may
proceed in two ways. On one hand it is possible to define formal elements
in A, as done for example in [ML, C VIII], from which one
deduces some diagram chasing lemmas. On the other hand one can use

the Freyd-Mitchell embedding theorem which we now state (for a proof

see [KS, T ..]).

I.. T (F-M)
Let A be a small¹abelian category. �ere exist a ring R and an exact fully
faithful functorA→ R-Mod.

A typical application of the theorem goes likes this: one starts from a finite

diagram in an abelian category, then one takes the full abelian subcategory

containing all objects involved in the diagram and uses the embedding

theorem to prove the desired result by diagram chase in R-Mod, finally
one pulls the result back to the original category. As a consequence one

has the five lemma and the snake lemma in any arbitrary abelian category.

I.. T (F L)
Consider a commutative diagram whose rows are complexes

X X X X

Y Y Y Y

f f f f

where X → X → X and Y → Y → Y are exact sequences.�en

• If f is a epimorphism and f, f are monomorphisms, then f is a
monomorphism.

• If f is a monomorphism and f, f are epimorphisms, then f is an
epimorphism.

�e classical five lemma is consequence of the above theorem and of the
fact that in an abelian category an arrow that is both amonomorphism and

an epimorphism is an isomorphism. It asserts that given a commutative

diagram with exact rows

 A small category is a category such that the collection of all arrows forms a set belonging
to some universe U , fixed beforehand.
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X X X X X

Y Y Y Y Y

f f f f f

if f, f, f and f are isomorphisms then f is an isomorphism also.

I.. T (S L)
A commutative diagram with exact rows

X′ X X′′ 

 Y′ Y Y′′

f 

h k

u v v

gives rise to an exact sequence

Keru
fÐ→ Ker v Ð→ Kerw φÐ→ Cokeru hÐ→ Coker v kÐ→ Cokerw .

Let now J be a full subcategory ofA. We say that J isFull Subcategories

• closed by subobjects (quotients) if for any monomorphism W ↪ X
(epimorphism X↠ Z) with X ∈ J then W ∈ J (Z ∈ J );

• closed by kernels (cokernels) if for any arrow X
fÐ→ Y in J we have

Ker f ∈ J (Coker f ∈ J );

• closed by extensions if for any short exact sequence → X′ → X →
X′′ →  with X′ , X′′ ∈ J then X ∈ J ;

• thick if it is closed under kernels, cokernels and extensions;

• generating (cogenerating) if any X ∈ A is a quotient (subobject) of
an object of J ;

• a fully abelian subcategory if it is abelian and the inclusion functor
is exact.

Let us now return to complexes. Given an abelian categoryA the cate-Long Exact Sequence

gory C(A) is also abelian and Cb(A) is thick in both C+(A) and C−(A),
which in turn are thick in C(A). �e abelian structure on C is given
component-wise. For example the kernel of a morphism f is given by the
complex (Ker f n)n , with differentials the natural maps among the kernels.
If X⋅ is a complex the following is an exact sequence for all n ∈ Z:

→ Hn(X⋅)→ Coker dn−X⋅
dn
X⋅→ Ker dn+X⋅ → Hn+(X⋅)→ .(I.)

If f ∶ X⋅ → Y⋅ is a map of complexes there is an induced map

H
n( f ) ∶ Hn(X⋅)Ð→ Hn(Y⋅).

One can then define the functors Hn ∶ C(A)→ A, for all n ∈ Z.
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I.. T
Any short exact sequence of complexes

→ X⋅ → Y⋅ → Z⋅ → 

gives rise to a long exact sequence

⋯→ Hn−(Z⋅)→ Hn(X⋅)→ Hn(Y⋅)→ Hn(Z⋅)→ Hn+(X⋅)→ ⋯

which is natural, in the sense that given a commutative diagram with exact
rows

 X⋅ Y⋅ Z⋅ 

 X′⋅ Y′⋅ Z′⋅ 

the square below commutes, for all n ∈ Z.

Hn(Z⋅) Hn+(X⋅)

Hn(Z′⋅) Hn+(X′⋅)

Proof
From the exact sequence we obtain commutative diagrams with exact rows

Coker dn−X⋅ Coker dn−Y⋅ Coker dn−Z⋅ 

 Ker dn+X⋅ Ker dn+Y⋅ Ker dn+Z⋅

Applying the snake lemma plus the exact sequence (I.) we obtain the

desired long exact sequence. ³

One can group all the cohomology functors Hn together into a single

functor

H
⋅ ∶ C(A)→ C(A)

where, given a complex X⋅, H⋅(X⋅) is the complex (Hn(X⋅))n with the zero
maps for differentials. If f is null homotopic one notices that H⋅( f ) = ,
therefore the functor H⋅ passes onto the homotopy category

H
⋅ ∶ K(A)Ð→ C(A).

Of course H⋅ restricts to all the subcategories C∗
,K∗
, for ∗ = +,−, b.

If we consider again a map f in C, we say that f is a quasi-isomorphism Quasi-isomorphisms
(qis for short) if H⋅( f ) is an isomorphism, viz. Hn( f ) is an isomorphism
for all n ∈ Z.�e same definition goes for morphisms inK.
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We’ve already remarked that if we start from an abelian categoryA, the
categories C∗(A) are abelian. Unfortunately the categories K∗(A) are
in general not abelian.�ey do have some structure though: they are an

example of triangulated categories. To illustrate this structure we must

introduce the mapping cone.

Fix again an additive categoryA.
I.. D

Let
f ∶ X⋅ Ð→ Y⋅

be a morphism of complexes.�emapping cone of f is the complexMc( f )
defined asMc( f ) = X⋅[]⊕ Y⋅ with differential

dMc( f ) = ( dX[] 

f [] dY
) .

Note that if f ∼  then Mc( f ) ≃Mc() inK. We have two natural maps

α( f ) ∶ Y⋅ Ð→Mc( f ),

which is simply the inclusion of Y⋅ in the second factor of Mc( f ) and

β( f ) ∶Mc( f )Ð→ X⋅[]

which is the projection on the first factor. Before we continue we give a

general definition.

A category with translation is a pair (C, T) where C is a category and TTriangles
is an automorphism of C, called the translation (or shi�²). We sometimes
use the notation [] for T when no confusion is possible. A functor of
categories with translation is a functor F ∶ (C, T) → (C′ , T′) between
the underlying categories such that F ○ T = T′ ○ F. We define an additive
category with translation to be a category with translation (A, T), whereA
is additive and T is also additive. Of course a functor of additive categories
with translation is simply a functor of categories with translations which
also is additive. Given an additive categoryA, the categories C∗(A) and
K∗(A), for ∗ = ub,+,−, b, are all additive categories with translation,
where the translation is given by the shi� of complexes by one.

A triangle in an additive category with translation (A, T) is a sequence
of morphisms

X
fÐ→ Y Ð→ Z hÐ→ TX.

We sometimes write

X
[]Ð→ Y

to indicate a map from X to TY. Because of this triangles are also denoted

by

X Ð→ Y Ð→ Z []Ð→ .

Amorphism of triangles is a commutative diagram

 Also called suspension by the topologists.
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X⋅ Y⋅ Z⋅ X⋅[]

X′⋅ Y′⋅ Z′⋅ X′⋅[]

ϕ ϕ[]

I.. L
LetA be an additive category and let f ∶ X⋅ → Y⋅ be a morphism in C(A).
�en there exists ϕ ∶ X⋅[] →Mc(α( f )) such that ϕ is an isomorphism in
K(A) and such that the following diagram commutes inK(A).

X⋅ Y⋅ Mc( f )⋅ X⋅[] Y⋅[]

X⋅ Y⋅ Mc( f ) Mc(α( f )) Y⋅[]

f α( f ) β( f ) − f []

f α( f ) α(α( f )) β(α( f ))

IdX⋅ IdY⋅ IdMc( f ) ϕ IdY⋅[]

Proof
See [KS, L ..]. ³

We say that a triangle X⋅ → Y⋅ → Z⋅ → X⋅[] is distinguished if it is
isomorphic to a mapping cone triangle X′⋅ → Y′⋅ → Mc(X′⋅ → Y′⋅) →
X′⋅[] as above.

I.. T
Let A be an additive category. �en the category K(A) together with the
collection of distinguished triangles (d.t. for short) satisfies the following
properties.

TR0 A triangle isomorphic to a d.t. is a d.t.

TR1 �e triangle

X
⋅ IdX⋅Ð→ X⋅ Ð→ Ð→ X⋅[]

is a d.t.

TR2 Any f ∶ X⋅ → Y⋅ can be embedded in a d.t.

X
⋅ fÐ→ Y⋅ Ð→ Z⋅ Ð→ X⋅[]

TR3 A triangle

X
⋅ fÐ→ Y⋅ Ð→ Z⋅ hÐ→ X⋅[]

is a d.t. if and only if

X
⋅ − fÐ→ Y⋅ −Ð→ Z⋅ −hÐ→ X⋅[]

is a d.t.

TR4 Given
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X⋅ Y⋅ Z⋅ X⋅[]

X′⋅ Y′⋅ Z′⋅ X′⋅[]

f  h

f ′ ′ h′

α β

where the top and bottom rows are distinguished triangles, and the
square on the le� is commutative there exists a (not necessarily unique)
γ ∶ Z⋅ → Z′⋅ giving rise to a morphism of distinguished triangles.

X⋅ Y⋅ Z⋅ X⋅[]

X′⋅ Y′⋅ Z′⋅ X′⋅[]

f  h

f ′ ′ h′

α β γ α[]

TR5 Given three d.t.s

X
⋅ fÐ→ Y⋅ hÐ→ Z′⋅ Ð→ X⋅[],

Y
⋅ Ð→ Z⋅ kÐ→ X′⋅ Ð→ Y⋅[],

X
⋅  fÐ→ Z⋅ lÐ→ Y′⋅ Ð→ X⋅[],

there exists a d.t.

Z
′⋅ uÐ→ Y′⋅ vÐ→ X′⋅ wÐ→ Z′⋅

such that the following diagram commutes.

X⋅ Y⋅ Z′⋅ X⋅[]

X⋅ Z⋅ Y′⋅ X⋅[]

Y⋅ Z⋅ X′⋅ Y⋅[]

Z′⋅ Y′⋅ X′⋅ Z′⋅[]

f h

 f l

 k

u v w

Id

f

h



Id

l

u

v

Id

Id

f []

h[]

Proof
See [KS, T ..]. ³

We define a triangulated category to be an additive category with trans-Triangulated Categories
lation (K, T) together with a collection of triangles, called distinguished,
satisfying axioms TR0 −TR5 above.�e above theorem states precisely
thatK(A) is a triangulated category. A functor of triangulated categories
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(or more simply a ∆-functor) is an additive functor of categories with

translation sending distinguished triangles into distinguished triangles. A

triangulated subcategory of a triangulated category (K, T) is a subcategory
K′ which is triangulated with translation T′ such that T′ is the restriction

of T and the inclusion is a ∆-functor. We have thatKb(A) is a triangulated
subcategory of both K+(A) and K−(A), which in turn are triangulated
subcategories ofK(A). We notice that if K is triangulated then K○ is also

triangulated.

Given a triangle in a triangulated category K

X
fÐ→ Y Ð→ Z []Ð→,

by applying TR1 and TR4 we obtain a commutative diagram

X X  TX

X Y Z TX

Id

f 

Id f

from which it follows that  f = .
A cohomological functor is an additive functor H ∶ K → A between a Cohomological

Functorstriangulated category and an abelian category such that for any d.t.

X → Y → Z → TX

the sequence

FX → FY → FZ

is exact. Note that, applying TR3, if X → Y → Z → TX is distinguished
and H is cohomological, we have a long exact sequence

⋯→ FT−Z → FX → FY → FY → FZ → FTX → ⋯

I.. P
Given an objectW ∈ K of a triangulated category, the functorsHomK(W, -)
andHomK(-, W) are cohomological.

Proof
Let

X
fÐ→ Y Ð→ Z Ð→ TX

be a distinguished triangle. We want to show that the sequence

Hom(W,X)Ð→ Hom(W, Y)Ð→ Hom(W, Z)

is exact. It is obviously a complex since  f = . Let now ϕ ∈ Hom(W, Y)
be a morphism such that ϕ = . We must show that there exists ψ ∈
Hom(W,X) such that f ψ = ϕ. In other words we want to show the

existence of the dashed arrows in the following diagram
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W W  TW

X Y Z TX

Id

f 

ψ ϕ Tψ

which is assured by TR3 and TR4. For Hom(-,W) one proceeds analo-
gously in K○. ³

I.. P
Consider a morphism of distinguished triangles

X Y Z TX

X′ Y′ Z′ TX′

f  h

f ′ ′ h′

α β γ Tα

if α and β are isomorphisms then so is γ.

Proof
WeapplyHom(W, -) to the diagram above andwewrite Ã forHom(W,A)
and l̃ for Hom(W, l).

X̃ Ỹ Z̃ T̃X T̃Y

X̃′ Ỹ′ Z̃′ T̃X′ T̃Y′

f̃ ̃ h̃ T̃ f

f̃ ′ ̃′ h̃′ T̃ f ′

α̃ β̃ γ̃ T̃α T̃β

Since Hom(W, -) is cohomological the top and bottom rows are exact,
also all vertical arrows, except perhaps for γ̃, are isomorphisms. As a

consequence of the five lemma we have that γ̃ also is an isomorphism.

�e arrow Z → Z′ gives rise to a morphism of functors

Hom(-, Z)
hγÐ→ Hom(-, Z′).

From the discussion abovewe know that for anyW themapHom(W, Z)→
Hom(W, Z′) is an isomorphism, therefore hγ is an isomorphism of func-

tors. Finally, applying the Yoneda lemma, we have that γ is an isomorphism

as well. ³

Later we will need the following simple lemma.

I.. L
Let

X
fÐ→ Y Ð→ Z Ð→ TX

be a distinguished triangle.�en f is an isomorphism if and only if Z = .
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Proof
Consider the following morphism of distinguished triangles.

X X  TX

X Y Z TX

Id

f

Id f

By P I.., if f is an isomorphism then Z = ; on the other
hand if Z = , then  → Z is an isomorphism and therefore f is an
isomorphism. ³

Let’s turn our attention again to complexes. Fix an abelian category Complexes in Abelian
CategoriesA. Consider a morphism f ∶ X⋅ → Y⋅ in C(A). It is straightforward

to check that the map α( f ) ∶ Y⋅ → Mc( f ) is a monomorphism, the
map β( f ) ∶Mc( f )→ X⋅[] is an epimorphism and the kernel of β( f ) is
isomorphic to the image α( f ).�us we obtain a short exact sequence

→ Y⋅ →Mc( f )→ X⋅[]→ .

Hence, if X⋅ → Y⋅ → Z⋅ → X⋅[] is a distinguished triangle, which means
that it is isomorphic to a mapping cone triangle as above, we obtain a short

exact sequence

→ Y⋅ → Z⋅ → X⋅[]→ .

Using TR3 it follows that the functor H ∶ K(A)→ A is cohomological.

. 

Let C be a category and let S be a class of morphisms. A localization of
C by S is a category CS together with a functor Q ∶ C → CS satisfying the
following axioms.

Loc1 For all s ∈ S , Q(s) is an isomorphism in CS .

Loc2 Any functor F ∶ C → D, such that F(s) is an isomorphism in D,
factors uniquely through CS . In other words there exists a unique
functor FS ∶ CS → D such that F is the composition FS ○Q.

C D

CS

F

Q
FS

We remark that axiom Loc2 implies that the natural map

HomFct(CS ,D) (G , G)→ HomFct(C,D) (G ○Q, G ○Q)

is bijective, viz. the functor ○Q is fully faithful.
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I.. Remark It is true that localizations always exist (see [GM] or [Mil])
and their construction is not hard: one simply adds formal inverses to the

arrows s ∈ S . Of course there are some technical details to verify, however
we do not need such a general result.

�e localization CS is unique up to equivalence and as a consequence we
have that (C○)S○ is equivalent to (CS)○.
In the general context the localization of a category is a very complicatedMultiplicative Systems

object: morphisms are not very easy to handle. However one gains some

structure by imposing the following conditions on S . A le� multiplica-
tive system in a category C is a collection of morphisms S satisfying the
following axioms.

S1 If f is an isomorphism then f belongs to S .

S2 If f ,  ∈ S then  f ∈ S , whenever defined.

S3 Given a diagram

Z

X Y
f

s

where s ∈ S , it can be completed to

W Z

X Y
f

s



t

where t ∈ S .

S4 Given a commutative diagram

X Y Z
sf



with s ∈ S , it can be completed to

W X Y Z
sf



t

where t ∈ S .

Analogously a right multiplicative system in a category C is a class of mor-
phisms S satisfying S1, S2 and the followingmirror axioms.
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S3′ Given a diagram

X Y

W

f

s

where s ∈ S , it can be completed to

X Y

W Z

f

s



t

where t ∈ S .

S4′ Given a commutative diagram

W X Y
s f



with s ∈ S , it can be completed to

W X Y Z
s f



t

where t ∈ S .
Multiplicative systems are sometimes referred to as localizing classes.

We are mainly interested in the case when S = Qis is the class of quasi-
isomorphisms of a triangulated subcategory ofK(A), for some additive
categoryA. Later we show that Qis is in fact both a le� and right multi-
plicative system.

I.. T
Let S be a le� multiplicative system in a category C. �en the localization
of C by S exists and it may be defined as follows.

ObCS = ObC

HomCS (X, Y) = {(s, X′ , f ) ∣ s ∶ X′ → X, f ∶ X′ → Y, s ∈ S}/∼

where the equivalence relation ∼ is defined below. A triple (s, X′ , f ) can be
visualized as a le� roof

X′

X Y

s f
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and given two roofs (s, X′ , f ) (t, X′′ , )

X′ X′′

X Y

s t f

are equivalent if there exists a third roof (u, X′′′ , h) such that the following
diagram commutes.

X′′′

X′ X′′

X Y

u h

s t f 

Given two roofs (s, X′ , f ), (t, Y′ , ) we can find, thanks to S3, a third roof
(u, W, h) such that the following commutes

W

X′ Y′

X Y Z

u h

s tf 

and we define the composition of (t, Y′ , ) with (s, X′ , f ) by the equiva-
lence class of the roof (su, W, h).
Similarly, if S is a right multiplicative system, the localization CS exists

and it may defined analogously. In particular, morphisms may be repre-
sented by right roofs ( f , Y′ , s)

Y′

X Y

f s

under the corresponding equivalence relation and with the corresponding
composition.

Sketch of Proof
�e proof is rather technical, we refer to [Mil, C ] for all the neces-

sary details. First one verifies that ∼ is indeed an equivalence relation over
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roofs and that composition is well-defined, associative and that identities

exist.�e quotient functor is given by the identity on objects and sends

any morphism f ∶ X → Y to the roof (Id, X, f ), or to the roof ( f , Y, Id).
If F ∶ C→ D is a functor sending arrows in S to isomorphisms, then we
define FS ∶ CS → D to be F on objects and to send a roof (s, X′ , f ) to
F( f ) ○ F(s)−, or equivalently to send a roof ( f , Y′ , s) to F(s)− ○ F( f ).
If G ∶ CS → D is another factorization of F then, for any roof (s, X′ , f ),

G ((s, X′ , f )) = G ((Id, X′ , f ) ○ (s, X′ , Id))
= G (Q( f )) ○ G (Q(s)−)
= F( f ) ○ F(s)−

= FS ((s, X′ , f )) .

And similarly for right roofs. ³

I.. Convention From now on, by multiplicative system or localizing class we
mean a system which is both le� and right multiplicative.

Let’s consider now the localization of a subcategory. Localization of
SubcategoriesI.. P

Let C be a category, C′ a full subcategory, S a multiplicative system. Let
S ′ be the collection of morphisms of C′ which belong to S . Assume that
S ′ is a multiplicative system in C′, then the inclusion C′ ↪ C passes onto
the localizations C′S′ → CS . Assume moreover that one of the following
conditions hold

(I.) If s ∶ X → Y′ is a morphism in S , with Y′ ∈ C′, there exists
t ∶W′ → X, withW′ ∈ C′ and such that st ∈ S .

(I.) If s ∶ X′ → Y is a morphism in S , with X′ ∈ C′, there exists
t ∶ Y → Z′, with Z′ ∈ C′ and such that ts ∈ S .

�en the induced functor C′S′ ↪ CS is fully faithful.
Proof
�e first statement is obvious. If ι ∶ C′ ↪ C andQ ∶ C→ CS are respectively
the inclusion and quotient functors, then any s ∈ S ′maps to Q○ι(s), which
as an isomorphism inCS , therefore Qι factors throughC′S′ . For the second
assertion we refer to [Mil, P ..]. ³

Let’s add some structure: let K be a triangulated category. A null system Localization of
Triangulated CategoriesN in K is a class of objects satisfying the following axioms.

NS1 �e zero object of K belongs to N.

NS2 An object X belongs to N if and only if TX belongs to N.

NS3 If X → Y → Z → TX is a d.t. and X, Y ∈ N, then Z ∈ N.

We define SN to be the collection of morphisms f ∶ X → Y such that f is
embedded in a d.t.

X
fÐ→ Y Ð→ Z Ð→ TX

with Z ∈ N. Not only dowe claim thatSN is amultiplicative system, we also

claim it is compatible with the triangulation, in the sense that it satisfies
the additional axioms:
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S5 For any morphism s, s ∈ SN if and only if Ts ∈ SN ;

S6 �e following diagram, where the rows are d.t.s and the vertical

maps are in SN

X Y Z TX

X′ Y′ Z′ TX′

s t Ts

can be completed into a morphism of triangles

X Y Z TX

X′ Y′ Z′ TX′

s t u Ts

with u ∈ SN.

Proof
See [KS, P ..]. ³

In this case we denote byK/N the localizationKSN
.�e key result is that

K/N is a triangulated category and that the quotient functor Q ∶ K→ K/N
is a ∆-functor. In fact, if we start with a localizing class S compatible
with the triangulation, we observe that there is an obvious translation

functor on KS . Indeed, if s ∈ S then by S5 Ts ∈ S , therefore T induces an
automorphism TS ∶ KS → KS which we denote simply by T. Since KS ,
endowed with the translation T, is a category with translation, we may

speak of triangles in KS . We define a triangle X → Y → Z → TX of KS to
be distinguished if there exists a d.t. X′ → Y′ → Z′ → TX′, of K, and an
isomorphism of triangles

X Y Z TX

X′ Y′ Z′ TX′

α β γ Tα

inKS . With the above translation and the above collection of distinguished
triangles the category KS becomes triangulated and the quotient functor
Q ∶ K→ KS is a ∆-functor (see [Mil, T ..]).
Again, if N is a null system and X ∈ N we have Q(X) ≃ . In fact

X → X →  → TX is a d.t. and therefore X →  → TX → X is a d.t. and
TX ∈ N, thus (X → ) ∈ SN yielding Q(X) ≃ .
Furthermore K/N satisfies the following universal property: any ∆-

functor functor F ∶ K → K′ such that FX ≃  for all X ∈ N, factors
uniquely through K/N. In fact if f ∈ SN, namely

X
fÐ→ Y Ð→ Z Ð→ TX
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is a d.t. with Z ∈ N, then

FX
F fÐ→ FY Ð→ FZ Ð→ TFX

is a d.t. We then consider the morphism of d.t.s

FX FY FZ TFX

FY FY  TFY

F f Id TF f

and since Id and (FZ → ) are both isomorphisms so is F f . As a result F
factors through K/N.

I.. T
LetK be a triangulated category;N a null system inK;K′ a full triangulated
subcategory; and finally let N′ be N ∩K′. Assume that

(I.) any d.t. inK, X′ → Y′ → Z → TX, withX, Y ∈ K′, is isomorphic
to a d.t. in K′,

then N′ is a null system in K′ and the inclusion K′ ↪ K induces a functor
K′/N′ → K/N. Assume moreover the following condition.

(I.) Any morphism X′ → N in K, with Y ∈ K′ and Z ∈ N, factors
through an object of N′.

�en the induced functor K′/N′ → K/N is fully faithful.

Proof
See [KS, P ..]. ³

.  

Fix an abelian category A. Let N∗(A) be the family of complexes in
K∗(A) quasi-isomorphic to zero, where ∗ = ub,+,−, b. It is straight-
forward to verify that N∗(A) is a null system, in fact: axioms NS1 and
NS2 are obviously satisfied, and NS3 is a consequence of the fact that
cohomology is a cohomological functor. We now show that the local-

izing class S associated with N∗(A) is precisely Qis∗(A), the class of
quasi-isomorphisms in the categoryK∗(A). If f ∈ S then there is a d.t.

X
⋅ fÐ→ Y⋅ Ð→ Z⋅ Ð→ X⋅[]

where Z⋅ is quasi-isomorphic to zero. Since H⋅ is cohomological we have

an exact sequence Hn−(Z⋅)→ Hn(X⋅)→ Hn(Y⋅)→ Hn(Z⋅) fromwhich
it follows that Hn(X⋅)→ Hn(Y⋅) is an isomorphism, and hence f is a qis.
On the other hand, if f is a qis then the cohomology long exact sequence
associated with the d.t.

X
⋅ fÐ→ Y⋅ Ð→Mc( f )Ð→ X⋅[]
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implies that the mapping cone Mc( f ) is quasi-isomorphic to zero, thus
proving f ∈ S .
We define the derived category ofA to beD(A) = K(A)/N(A), along�e derived Category

with the bounded versions D∗(A) = K∗(A)/N∗(A), for ∗ = +,−, b. If
the category A is understood we o�en omit to explicit the dependency
fromA in the notation.�e results of the previous section imply thatD is
triangulated and that the quotient functor Q ∶ K→ D is a ∆-functor.

I.. Remark If Q ∶ K→ D is the quotient functor and X⋅ ∈ K then:

Q(X) ≃  ⇐⇒ H
⋅(X⋅) = .

Also a morphism f ∶ X⋅ → Y⋅ inD is an isomorphism if and only if there
exists a qis s ∶W⋅ → X⋅ such that f s is null homotopic; or dually, f is an
isomorphism inD if and only if there exists a qis t ∶ Y⋅ → Z⋅ such that t f
is null homotopic.

�e cohomology functors pass over to the derived category. Namely

the functor Hn ∶ D(A) → A is well-defined and cohomological. Of
course, the functor H⋅ ∶ D→ C is also well-defined. We recall that, given
a complex X⋅, H⋅(X⋅) is defined to be the complex (Hn(X⋅))n with null
differentials. Also, a morphism f ∶ X⋅ → Y⋅ inD is an isomorphism if and
only if Hn( f ) is an isomorphism for all n ∈ Z.
If we start with a short exact sequence

→ X⋅ → Y⋅ → Z⋅ → 

we define a morphism of complexes φ ∶ Mc( f ) → Z⋅ as φ = (, ). We
claim that φ is a quasi-isomorphism. �ere is a commutative diagram

with exact rows

 X⋅ X⋅  

 X⋅ Y⋅ Z⋅ 

f

f

Id f

which yields a short exact sequence

→Mc(IdX⋅)→Mc( f )→Mc(→ Z⋅)→ 

where Mc(→ Z⋅) is clearly equal to Z⋅ and it is easy to see that Mc(IdX⋅)
is an exact complex. As a consequence of the cohomology long exact

sequence we have isomorphisms Hn(Mc( f ))→̃Hn(Z⋅). If we denote the
inverse of φ inD by ψ we have a morphism of triangles

X⋅ Y⋅ Mc( f ) TX⋅

X⋅ Y⋅ Z⋅ TX⋅

f α( f ) β( f )

f  ψ ○ β( f )

Id Id φ Id
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hence an exact sequence gives rise to a distinguished triangle inD.
We now illustrate another property of derived categories. Let’s denote Bounded Cohomology

byD∗ the full triangulated subcategory ofD consisting of complexes X⋅
such that H⋅(X⋅) belongs to C∗

(for ∗ = +,−, b). With a slight abuse of
notation, we claim thatD∗

, the full subcategory consisting of complexes

lying in to C∗
, is equivalent via the inclusion toD∗, the full subcategory

consisting of complexes with cohomology lying in C∗
(see [KS]).

We say that a complex X⋅ is a k-complex if Xn =  for n ≠ k. We say
that X⋅ is an Hk-complex if Hn(X⋅) =  for n ≠ k. We implicitly think
of objects of A as -complexes. One has that, through the composition
A→ C→ K→ D,A is equivalent the full subcategory ofD consisting of
H-complexes.

. 

We recall that if B is a subcategory ofA we say that B is cogenerating if
any A ∈ A is a subobject of some B ∈ B. We say that B is generating if any
A ∈ A is a quotient of some B ∈ B.

I.. L
Let I be a full cogenerating additive subcategory ofA and let X⋅ ∈ C≥a(A),
for some integer a ∈ Z.�en there exists I⋅ ∈ C≥a(I) and a qis X⋅ → I⋅.
Dually, ifP is a full generating additive subcategory ofA andX⋅ ∈ C≤a(A),

then there exists P⋅ ∈ C≤a(P) and a qis P⋅ → X⋅.
Proof
See [KS, P ..]. ³

Again, let I and P be two additive subcategories of A. Consider the
following conditions.

(I.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ere exists an integer d ≥  such
that, for any exact sequence

Id → ⋯→ I → X → 

with I j ∈ J , Y ∈ J .

(I.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ere exists an integer d ≥  such
that, for any exact sequence

→ X → P → ⋯→ Pd

with P j ∈ P , X ∈ P .

I.. T
If I is a full cogenerating subcategory ofA then the natural functor

K+(I)/N+(I)Ð→ D+(A)

is an equivalence. Moreover, if I satisfies condition (I.) above, then the
functor

Kb(I)/Nb(I)Ð→ Db(A)
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is also an equivalence.
Similarly, if P is a full generating subcategory ofA then the functor

K−(P)/N−(P)Ð→ D−(A)

is an equivalence. Moreover, if P satisfies condition (I.) above, then the
functor

Kb(P)/Nb(P)Ð→ Db(A)

is also an equivalence.

We now introduce injective and projective objects of an abelian categoryInjectives and
Projectives A. We recall that, given X ∈ A, the functorsHomA(-, X) andHomA(X, -)

are both le� exact. We say that an object I ∈ A is injective (in A) if
the functor HomA(-, I) is exact. Analogously, an object P is projective
if HomA(P, -) is exact. We say that A has enough injectives if the full
subcategory IA consisting of all injective objects is cogenerating. Of
course, we say that A has enough projectives if the full subcategory PA
consisting of all projective objects is generating.

�ere other equivalent ways to define injective and projective objects.

First we give another definition.

I.. D/P
Let

Ð→ X′ fÐ→ X Ð→ X′′ Ð→ 

be a short exact sequence.�en the following are equivalent.

(I.) �ere exists h ∶ X′′ → X such that h = IdX′′ .

(I.) �ere exists k ∶ X → X′ such that k f = IdX′ .

(I.) �ere exist h ∶ X′′ → X and k ∶ X → X′ such that IdX = f k+h.

(I.) �ere exist φ ∶ X → X′ ⊕ X′′ and ψ ∶ X′ ⊕ X′′ → X such that φ

and ψ are mutually inverses of each other.

(I.) For any Y ∈ A the mapHomA(Y, ) is surjective.

(I.) For any Y ∈ A the mapHomA( f , Y) is surjective.

If any of the above conditions holds, we say that the short exact sequence
splits.

Proof
See [KS, P ..]. ³

I.. T
�e following are equivalent.

(I.) I is injective.

(I.) Maps X′ → I, where X′ is a subobject of some object X, can be
extended to X. In other words
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 X′ X

I

we claim the existence of the dashed arrow in the above diagramwith
exact rows.

(I.) Any exact sequence

→ I → X → X′′ → 

splits.

Also, any two objects X′, X′′ are injective if and only if X′ ⊕X′′ is injective.
Similarly, the following are equivalent.

(I.) P is injective.

(I.) Maps P → X′′, where X′′ is a quotient of some object X, can be
li�ed to X. In other words

P

X X′′ 

we claim the existence of the dashed arrow in the above diagramwith
exact rows.

(I.) Any exact sequence

→ X′ → X → P → 

splits.

Also, any two objectsX′,X′′ are projective if and only ifX′⊕X′′ is projective.

Proof
See [KS, S .]. ³

We state an important technical property of injectives and projectives.

I.. L
If f ∶ X⋅ → I⋅ is a morphism in C(A), where I⋅ ∈ IA is a complex made up
of injectives and where X⋅ is an exact complex, then f is null homotopic.
Dually, if  ∶ P⋅ → X⋅ is a morphism in C(A), where P⋅ ∈ PA is a

complex made up of projectives and where X⋅ is an exact complex, then  is
null homotopic.

Proof
See [KS, L ..]. ³
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A great consequence of the above lemma is the following theorem. We

remind that we denote IA and PA the full subcategories ofA, consisting
of injectives and projectives respectively.

I.. T
If A has enough injectives then the quotient functor K+(IA) → D+(A)
is an equivalence. If moreover IA satisfies condition (I.) above then the
quotient functorKb(IA)→ Db(A) is also an equivalence.
Dually, ifA has enough projectives then the quotient functorK−(PA)→

D−(A) is an equivalence. If moreover PA satisfies condition (I.) above
then the quotient functorKb(PA)→ Db(A) is also an equivalence.

We now consider the localization of an abelian subcategory ofA.Derived Category of
Subcategories

I.. Notation IfA′ is a full abelian subcategory ofA we writeD∗
A′(A) to in-

dicate the full triangulated subcategory ofD∗(A) consisting of complexes
whose cohomology lies inA′, where ∗ = ub,+,−, b.

Of course the inclusion A′ → A induces a functor D∗(A′) → D∗
A′(A).

We recall that a full abelian subcategory B is thick if it is closed under
kernels, cokernels and extensions.

I.. T
LetA′ be a thick subcategory ofA. Assume the following condition.

(I.) For any monomorphismW′ ↪ X, withW′ ∈ A′, there exists a
morphism X → I′, with I′ ∈ A′, such that the composition is also a
monomorphism (it can be visualized by the following diagram with
exact rows and diagonals).



 W′ X

I′

�en the functorsD+(A′)→ D+
A′(A) andDb(A′)→ Db

A′(A) are equiv-
alences.
Similarly, we assume the following condition.

(I.) For any epimorphism X ↠ Z′, with Z′ ∈ A′, there exists a
morphism P′ → X, with P′ ∈ A′, such that the composition is also
an epimorphism (it can be visualized by the following diagram with
exact rows and diagonals).
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P′

X Z′ 



�en the functorsD−(A′)→ D−
A′(A) andDb(A′)→ Db

A′(A) are equiv-
alences.
Proof
See [KS, T ..]. ³

As a particular case we obtain the next corollary.

I.. C
IfA′ is a thick subcategory ofA such that any X′ ∈ A′ is a subobject of an
I′ ∈ A′ which is injective as an object of A, then the functors D+(A′) →
D+
A′(A) andDb(A′)→ Db

A′(A) are equivalences.
Analogously, if any X′ ∈ A′ is a quotient of a P′ ∈ A′ which is projective

as an object of A, then the functors D−(A′) → D−
A′(A) and Db(A′) →

Db
A′(A) are equivalences.

.  

Let us start by considering the general situation. Consider a functor Localization of
FunctorsF ∶ C → D and a class of morphisms S in C. We already know that if F

sends elements ofS to isomorphisms inD then the functor factors through
the localization. In the general case however F need not to factor, so we

want to define what resembles most closely the desired factorization. We

give the following definitions.

(I.) A right localization of F (with respect toS) is a functorRSF ∶ CS →
D together with a morphism of functors τ ∶ F → RSF ○Q

C D

F

⇓ τ

RSF ○ Q

such that for any functor G ∶ CS → D the map

HomFct(CS ,D) (RSF, G)Ð→ HomFct(C,D) (RSF ○Q, G ○Q)
○τÐ→ HomFct(C,D) (F, G ○Q)

is bijective. A functor F is said to be right localizable if it admits
a right localization. Note that if (RSF, τ) exists it is unique up to
unique isomorphism.³

 Given a second localization (R′ , τ′), substitute G withR′ and trace back τ and τ′ to obtain
the isomorphism.
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(I.) F ∶ C → D is a universally right localizable functor is such that for
any F′ ∶ D → D′, the functor F′ ○ F is right localizable and the
obvious⁴ natural transformation

RS(F′ ○ F) F′ ○RSF
∼

is an isomorphism.

Similarly one defines le� localizations. A le� localization of F is a functor
LSF ∶ CS → D together with a morphism of functors σ ∶ LSF ○Q → F

C D

LSF ○ Q

⇓ σ

F

such that for any other functor G ∶ CS → D the natural transformation σ

induces a bijection

HomFct(CS ,D) (G,LSF)
∼Ð→ HomFct(C,D) (G ○Q, F) .

We say that F is le� localizable if it admits a le� localization; of course, the
pair (LSF, σ) is unique up to unique isomorphism. Finally F is universally
le� localizable if for any functor F′ ∶ D→ D′, F′ ○ F is le� localizable and
the natural transformation F′ ○ LSF → LS(F′ ○ F) is an isomorphism.

I.. Caution Even if a given functor F is both le� and right localizable the
localizations LF and RF are in general not isomorphic. However there
always exists a morphism LF → RF between them.

I.. Notation In various definitions that we encounter one o�en has to explicit
the dependency over some localizing class S or some null system N. As it
becomes cumbersomewe choose to omit the dependencies in the notations

when no confusion may arise. We remind that we are mainly interested in

only one type of multiplicative systems: quasi-isomorphisms.

Admittedly, the above definitions are rather technical and abstract. We

would like an easier way to establish the existence and to compute the

localizations of a functor. It turns out that there are some cases in which

computing the localizations becomes easier.

I.. T
Let F ∶ C → D be a functor. Let S be a multiplicative system in C, let C′ be
a subcategory of C and denote by S ′ the class of morphisms of C′ belonging
to S . Assume that for any s ∈ S ′, F(s) is an isomorphism in D. Consider
the following conditions.

(I.) For any X ∈ C, there exists s ∶ X → I with I ∈ C′ and s ∈ S ′.

(I.) For any X ∈ C, there exists t ∶ P → X, with P ∈ C′ and t ∈ S ′.

�en
 Induced by Kτ.
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(I.) If (I.) holds then F is universally right localizable and the
composition

C′ ↪ C
QÐ→ CS

RSFÐ→ D

is isomorphic to the restriction of F to C′.

(I.) If (I.) holds then F is universally le� localizable and the com-
position

C′ ↪ C
QÐ→ CS

LSFÐ→ D

is isomorphic to the restriction of F to C′.

Proof
See [KS, P ..]. ³

We now turn to the localization of functors in triangulated categories. Localization of
Triangulated Functors�e definition of the localization of a ∆-functor is given exactly as above,

only replacing functor with ∆-functor everywhere. Fix now two triangu-
lated categories K, K′ and two null systems N, N′. Let Q ∶ K→ K/N and
Q′ ∶ K′ → K′/N′ be the quotient functors.

We say that a ∆-functor F ∶ K→ K′ is right localizable (with respect to
(N,N′)) if Q′ ○ F ∶ K→ K′/N′ is universally right localizable with respect

to the localizing class SN, associated with the null system N. We write RF
for the right localization of F. Ditto for le� localizations.

I.. D
In the setting above, let A be a full subcategory of K. Consider the following
conditions.

(I.) For any X ∈ K, there exists (X → I) ∈ SN with I ∈ A.

(I.) For any X ∈ K, there exists (P → X) ∈ SN with P ∈ A.

(I.) F(N ∩A) ⊂ N′.

�e subcategory A is F-injective (with respect to (N,N′) of course) if it sat-
isfies conditions (I.) and (I.) above.�e subcategory A is F-projective
if it satisfies conditions (I.) and (I.) above.

Note that if F(N) ⊂ N′ then the whole category K is both F-injective and
F-projective.

I.. T
If I is F-injective then F is universally right localizable and its right local-
ization RF is a ∆-functor. Moreover RF may be defined by the following
diagram

K K/N

I I/ (I ∩N)

K′/N′

∼

RF



   -   

and

(I.) RF(X) ≃ F(I), for (X → I) ∈ SN and I ∈ I.

Similarly, if P is F-projective then F is universally le� localizable and
its le� localization LF is a ∆-functor. Moreover LF may be defined by the
following diagram

K K/N

P P/ (P ∩N)

K′/N′

∼

LF

and

(I.) LF(X) ≃ F(P), for (P → X) ∈ SN and P ∈ P.

Proof
It is a straightforward consequence of T I.. applied to the functor

Q′ ○ F. ³

I.. T
Let F ∶ K → K′ and G ∶ K′ → K′′ be two ∆-functors and let N, N′, N′′ be
null systems in K, K′ and K′′ respectively (we consider localizations with
respect to these null systems).

• IfRF, RG andR(G ○ F) exist then there is a canonical morphism of
functors

R(G ○ F)Ð→ RG ○RF.(I.)

• Let I be an F-injective subcategory of K and let I′ be a G-injective
subcategory of K′. Assume that F(I) ⊂ I′ .�en I is (G ○ F)-injective
and (I.) is an isomorphism.

Dually:

• If LF, LG and L(G ○ F) exist then there is a canonical morphism of
functors

LG ○ LF Ð→ L(G ○ F).(I.)

• LetP be an F-projective subcategory ofK and letP′ be aG-projective
subcategory of K′. Assume that F(P) ⊂ P′. �en P is (G ○ F)-
projective and (I.) is an isomorphism.

Proof
Let’s prove the first assertion. By D (I.), for any functor

J ∶ K/N→ K′′/N′′ we have a bijection

Hom (R(G ○ F), J) ≃ Hom (Q′′ ○ G ○ F, J ○Q) ,
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which for J = RG ○RF yields

Hom (R(G ○ F),RG ○RF) ≃ Hom (Q′′ ○ G ○ F,RG ○RF ○Q) .(I.)

Also by definition we have two natural transformations Q′F → RF ○ Q
and Q′′G → RG → Q′.

K K′/N′

Q′ ○ F

⇓

RF ○ Q
,

K′ K′′/N′′

Q′′ ○ G

⇓

RG ○ Q′

We thus deduce the morphisms Q′′ ○G ○F → RG ○Q′ ○F → RG ○RF ○Q,
which through the bijection (I.) gives (I.).

Let’s prove the second assertion.�e subcategory I is obviously (G ○F)-
injective. Applying T I.. to the present case, we find how to

compute localizations. Let X ∈ K and let (X → I) ∈ SN, where I ∈ I.�en
RF(X) ≃ F(I), in turn F(I) ∈ I′ therefore RG(F(I)) = G(F(I)). Finally,
since I is (G○F)-injective, we haveR(G○F)(X) ≃ G○F(I) = RG(F(I)) ≃
RG(RF(X)), for all X ∈ K.�e proof for projectives is similar. ³

Let’s move on to derived categories. Let F ∶ A→ A′ be an additive func- Derived Functors
tor between abelian categories and let the ∆-functorsK∗(F) ∶ K∗(A)→
K∗(A′) be its extensions to the homotopy categories, for ∗ = ub,+,−, b.
We usually denote the extensions of F still by F. Let, as usual, ∗ be one of
ub,+,−b.
We say that F is right derivable (or admits a right derived functor) on

K∗(A) if the ∆-functorK∗(F) is universally right localizable (with respect
to N∗(A) and N∗(A′) ).
In such a case, the right localization of F is denoted byR∗

F and is called

the right (total) derived functor of F.�e functor Hk ○R∗
F is denoted by

Rk
F and called the k-th (classical, right) derived functor of F.
Similarly, F is le� derivable ifK∗(F) is universally le� localizable.�e

le� localization of F is denoted by L∗F and called the le� (total) derived
functor of F. Finally Hk ○ L∗F is denoted by Lk

F and called the k-th
(classical, le�) derived functor of F.

I.. Remark Notice that R∗
F and L∗F (when they exist) are ∆-functors. Also

Rk
F and Lk

F (when they exist of course) are cohomological functors from

D∗(A) toA′. When no confusion arises we drop the superscript ∗ from
the notation and simply denote the derived functors by RF and LF.

We say that a full additive subcategory I ofA is F-injective if the sub- Injective and Projective
Subcategories of an
Abelian Category

categoryK+(I) isK+(F)-injective, in the sense of D I...
Similarly, P is F-projective ifK−(P) isK−(F)-projective.

I.. Remark By definition I is F-injective if and only if

(I.) for any X⋅ ∈ K+(A) there exists a qis X⋅ → I⋅, with I⋅ ∈ K+(I);

(I.) for any exact complex I⋅ ∈ K+(I), F(I⋅) is exact.

Analogously, P is F-projective if and only if
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(I.) for any X⋅ ∈ K−(A) there exists a qis P⋅ → X⋅, with P⋅ ∈
K−(P);

(I.) for any exact complex P⋅ ∈ K−(P), F(P⋅) is exact.

When dealing with injective and projective subcategories, deriving func-

tors becomes a simplematter.

I.. T
If I is F-injective then R+

F ∶ D+(A)→ D+(A′) exists and

(I.) R+
F(X⋅) ≃ F(I⋅), for any qis X⋅ → I⋅, with I⋅ ∈ K+(I).

If P is F-projective then L−F ∶ D−(A)→ D−(A′) exists and

(I.) L+F(X⋅) ≃ F(P⋅), for any qis P⋅ → X⋅, with P⋅ ∈ K+(P).
Proof
It follows from T I.. above. ³

Now we seek for a criterion to determine injectiveness and projectiveness

of subcategories.

I.. T
Let I be a full additive subcategory ofA and let F be le� exact. Assume that

(I.) I is cogenerating;

(I.) for any exact sequence  → I′ → I → X′′ → , with I′ , I ∈ I ,
we have X′′ ∈ I ;

(I.) for any exact sequence → I′ → I → I′′ → , with I′ , I, I′′ ∈ I ,
→ F(I′)→ F(I)→ F(I′′)→  is exact.

�en I is F-injective.
Similarly, let F be right exact. Assume that

(I.) P is generating;

(I.) for any exact sequence → X′ → P → P′′ → , with P′′ , P ∈ P ,
we have X′ ∈ P ;

(I.) for any exact sequence → P′ → P → P′′ → , with P′ , P, P′′ ∈
P , → F(P′)→ F(P)→ F(P′′)→  is exact.

�en P is F-projective.

Proof
See [KS, C ..]. ³

When the existence of the derived functor is already known we can findF-acyclic Objects
other injective and projective subcategories ofA.

I.. Remark Let F ∶ A→ A′ be an additive functor between abelian categories
and assume that there exists an F-injective subcategory ofA. One notices
that Rk

F(X) = , for X ∈ A and k < , if F is furthermore le� exact then
RF(X) ≃ F(X). Indeed, for X ∈ A and X → I⋅ a qis, the morphism
X → I⋅ → τ≤I⋅ is a qis.
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If F is right derivable, an object X ∈ A is called right F-acyclic if

Rk
F(X) = 

for k ≠ . If I is an F-injective subcategory ofA, then any object of I is
right F-acyclic.

If A has enough injectives then the full subcategory IA of injectives
is F-injective for any additive functor F. Indeed, any exact complex in

K+(IA) is homotopic to zero by L I... In particular, RF exists.

Of course we have a mirror remark for le� derived functors.

I.. Remark Dually, assume that there exists an F-projective subcategory of
A. One notices that Lk

F(X) = , for X ∈ A and k > , if F is furthermore
right exact then LF(X) ≃ F(X).
If F is le� derivable, an object X ∈ A is called le� F-acyclic ifLk

F(X) = 
for k ≠ . If P is an F-projective subcategory ofA, then any object of P is
le� F-acyclic.

IfA has enough projectives then the full subcategory PA projectives is
F-projective for any additive functor F. In particular, RF exists.

I.. T
Let F be le� exact and let I be F-injective. Write IF for the full subcategory
of A consisting of right F-acyclic objects. �en IF contains I and satisfies
conditions (I.)-(I.) above. In particular IF is F-injective.
Dually, let F be right exact and P F-projective.�en PF , the category of

le� F-acyclics, contains P and satisfies (I.)-(I.) above.

Proof
Wewant to prove that IF satisfies the hypotheses of T I... Since
any object in I is F-acyclic we have that IF contains I, and therefore is
cogenerating. Let  → X′ → X → X′′ →  be exact, where X′ and X are
F-acyclic.�en, regarding the above sequence as a d.t. inD(A) and since
Rk
F exists and is cohomological, we have a long exact sequence

⋯→ R j
F(X)→ R j

F(X′′)→ R j+
F(X′)⋯

which implies that R j
F(X′′) =  for k ≠ , and hence that X is right

F-acyclic. By R I.., the above exact sequence yields an exact

sequence

→ F(X′)→ F(X)→ F(X′′)→ RF(X′) = 

therefore IF is F-injective. For projectives the proof is analogous. ³

We finish with the composition of derived functors. Composition of Derived
Functors

I.. T
Let F ∶ A → B and G ∶ B → C be two additive functors among abelian
categories. Assume that the right derived functorsRF andRG exist onD+.
�en there is a canonical morphism of functors

R(G ○ F)Ð→ RG ○RF.(I.)
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Assume moreover that there exist an F-injective subcategory I and a G-
injective subcategory J such that F(I) ⊂ J . �en I is (G ○ F)-injective
and the morphism (I.) induces an isomorphism

R(G ○ F) ∼Ð→ RG ○RF.(I.)

Dually, assume that the le� derived functors LF and LG exist on D−.
�en there is a canonical morphism of functors

LG ○ LF Ð→ L(G ○ F).(I.)

Assume moreover that there exist an F-projective subcategory P and a G-
projective subcategoryQ such that F(P) ⊂ Q.�enP is (G○F)-projective
and the morphism (I.) induces an isomorphism

LG ○ LF ∼Ð→ L(G ○ F).(I.)

Proof
All assertions are just an application of T I.. to the functors

K+(F),K+(G),K−(F) andK−(G). ³

. 

A double complex (or bicomplex) X⋅,⋅, in an additive category A, is aDouble Complexes
collection of objects (Xp,q)p,q∈Z and differentials

∂p,qX⋅,⋅ ∶ X
p,q Ð→ Xp+,q

δ
p,q
X⋅,⋅ ∶ X

p,q Ð→ Xp,q+

such that ∂p+,q∂p,q = , δp,q+δp,q =  and δp+,q∂p,q = ∂p,q+δp,q . A

double complexe can be visualized as a commutative diagram

⋮ ⋮

⋯ Xp,q+ Xp+,q+ ⋯

⋯ Xp,q Xp+,q ⋯

⋮ ⋮

∂p,q+

∂p,q

δp,q δp,q+

where the rows and the columns are complexes. O�en, for a double com-

plex X⋅,⋅, the horizontal differentials ∂p,qX are denoted by d′X
p,q
and the

vertical differentials δ
p,q
X are denoted by d′′X

p,q
. Morphisms of double

complexes are defined as collection of morphisms ( f p,q)p,q∈Z commuting
with all the differentials. We have thus constructed the additive category

C(A) of double complexes inA.
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We define two functors FI , FII ∶ C(A)→ C(C(A)).�e first consid-
ers the columns of a double complex as objects inC(A) and the horizontal
maps as differentials between them. �e second functor does the same

for rows. Namely, if X⋅,⋅ is a double complex, then FI(X⋅,⋅) = XI is the
complex (of complexes) with components

FI(X⋅,⋅)n = Xn
I = Xn ,⋅

and FII(X⋅,⋅) = XII is the complex with components

FII(X⋅,⋅)m = Xm
II = X⋅,m .

It is straightforward to check that the functors FI and FII are equivalences

of categories.

Assume now thatA admits countable coproducts, or assume that the Total Complex
complexes we work with satisfy the following finiteness condition

(I.) for any n ∈ Z, the set {(p, q) ∈ Z ×Z ∣ p + q = n, Xp,q ≠ } is finite,

which is always satisfied if we work with first quadrant or third quadrant
double complexes (i.e. Xp,q =  outside the first or third quadrant). We
now define a functor tot = tot⊕ ∶ C(A) → C(A), which takes a double
complex and gives a (simple) complex. If (X⋅,⋅ , ∂X , δX) is a double com-
plex then (tot(X⋅,⋅)n , dn)n is called the total complex (or simple complex)
associated with X⋅,⋅. Its components are

tot(X⋅,⋅)n = ⊕
p+q=n

X
p,q

and the differentials dn are uniquely determined by their restrictions

dn ∣Xp,q = δ
p+,q∂p,q + (−)p∂p,q+δp,q

on each Xp,q such that p + q = n.
By bifunctor we mean simply a functor F ∶ A ×A′ → A′′ defined on Bifunctors

the product of two categories. A bifunctor is said to be additive, le� exact,

right exact, exact, coholomogical or a ∆-bifunctor if it so with respect to

each variable.

I.. Example For a k-linear abelian category C, the functor HomC ∶ C○ × C →
k-Mod is a le� exact bifunctor.

Let F ∶ A×A′ → A′′ be an additive bifunctor between additive categories.
Wewant to extend F to complexes. Given two complexes X⋅, Y⋅ we form the

double complex F⋅,⋅(X⋅ , Y⋅) with components Fp,q(X⋅ , Y⋅) = F(Xp , Yq)
and with horizontal differential ∂p,q = F(d pX , Yq) and vertical differential
δp,q = F(Xp , dqY). Composing with the total complex functor we obtain
the desired extension F⋅ of F to complexes. Since we want to use the

finiteness condition (I.), we impose some boundedness conditions: we

define F⋅ (which we usually denote simply by F) to be

F
⋅ = tot ○F ∶ C∗(A) ×C∗(A′)Ð→ C∗(A′′)

where ∗ = +,−, b.
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One notices (see [KS, P ..]) that the extensions of F

are compatible with homotopy, thus obtaining functors

F ∶ K∗(A) ×K∗(A′)Ð→ K∗(A′′)

for ∗ = +,−, b. Before passing onto the derived category we take a look
at a more general situation. We study the localization of a functor of twoLocalization of

Bifunctors variables.

I.. Remark IfC andC′ are two categories andS andS ′ are twomultiplicative
systems then S × S ′ is a multiplicative system in C × C′ and (C × C′)S×S′
is equivalent to CS × C′S′ .

Let K, K′, K′′ be three triangulated categories with respective null sys-

temsN,N′,N′′ and respective quotient functors Q, Q′, Q′′. Let F ∶ K×K′ →
K′′ be a ∆-bifunctor. We say that F is right localizable (with respect to
(N × N′ ,N′′)) if the functor Q′′ ○ F is universally right localizable with
respect to the multiplicative system SN×SN′ (see remark above). Similarly

we say that F is le� localizable if Q′′ ○F is universally le� localizable. Again
we omit the dependencies from the null systems in our notations. We now

want to define injective and projective subcategories in the above setting.

Let I, I′ be full subcategories of K, K′. We say that the pair (I, I′) is
F-injective if the following conditions hold.

(I.) For any I ∈ I, I′ is F(I, -)-injective.

(I.) For any I′ ∈ I′, I is F(-, I′)-injective.

Unraveling the definitions we see that (I, I′) is F-injective if and only if
the following conditions are satisfied.

(I.) For any X ∈ K, there exists (X → I) ∈ SN with I ∈ I.

(I.) For any X′ ∈ K′, there exists (X′ → I′) ∈ SN′ with I′ ∈ I′.

(I.) For any I ∈ I, I′ ∈ I′, we have F(I, I′) ∈ N′′ if I ∈ N or I′ ∈ N′.

(viz. F(I ∩N, I′) ⊂ N′′ and F(I, I′ ∩N′) ⊂ N′′)

Similarly, ifP,P′ are full subcategories ofK,K′, we say that the pair (P,P′)
is F-projective if the following conditions hold.

(I.) For any P ∈ P, P′ is F(P, -)-projective.

(I.) For any P′ ∈ P′, P is F(-, I′)-projective.

Of course, the above conditions are equivalent to the conditions below.

(I.) For any X ∈ K, there exists (P → X) ∈ SN with P ∈ P.

(I.) For any X′ ∈ K′, there exists (P′ → X′) ∈ SN′ with P′ ∈ P′.

(I.) For any P ∈ P, P′ ∈ P′, we have F(P, P′) ∈ N′′ if P ∈ N or P′ ∈ N′.

(viz. F(P ∩N,P′) ⊂ N′′ and F(P,P′ ∩N′) ⊂ N′′)

�e following results are a consequence of the theory of localizations of

functors developed so far.
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I.. T
In the setting above, assume the pair (I, I′) to be F-injective. �en F is
right localizable, its right localization RF ∶ K/N × K′/N′ → K′′/N′′ is a
∆-bifunctor and

(I.) RF(X, X′) ≃ F(I, I′), for (X → I) ∈ SN, (X′ → I′) ∈ SN′ ,
I ∈ I, I′ ∈ I′.

Similarly, assume the pair (P,P′) to be F-projective. �en F is le� lo-
calizable, its le� localization LF ∶ K/N ×K′/N′ → K′′/N′′ is a ∆-bifunctor
and

(I.) LF(X, X′) ≃ F(P, P′), for (P → X) ∈ SN, (P′ → X′) ∈ SN′ ,
P ∈ P, P′ ∈ P′.

I.. C
In the above setting assume that

(I.) F(I,N′) ⊂ N′′;

(I.) for any X′ ∈ K′, I is F(-, X′)-injective.

�en F is right localizable and

RF(X, X′) ≃ RF(-, X′)(X).(I.)

Analogously, assume that

(I.) F(P,N′) ⊂ N′′;

(I.) for any X′ ∈ K′, P is F(-, X′)-projective.

�en F is le� localizable and

LF(X, X′) ≃ LF(-, X′)(X).(I.)

Of course a similar statement holds when switching the variables of F

around.

�e definitions and results for derived categories are analogous to the Derived Bifunctors
ones for triangulated categories. We just state an additional result, a proof

can be found in [KS, C ..].

I.. C
Let I be a cogenerating subcategory of an abelian category A. Let F ∶ A ×
A′ → A′′ be an additive bifunctor. Assume that

(I.) for any I ∈ I , F(I, -) is exact;

(I.) for any X′ ∈ A, I is F(-, X′)-injective.

�en F is right derivable and for X⋅ ∈ K+(A), X′⋅ ∈ K+(A′)

(I.) RF(X⋅ , X′⋅) ≃ Q′′ ○ KF(I⋅ , X′⋅), for a qis (X⋅ → I⋅) with I⋅ ∈
K+(I).

In particular for X ∈ A and X′ ∈ A, RF(X, X′) = RF(-, X′)(X).

�ere is of course a similar statement for projectives.

Applying these results to the functor HomA one proves that (see [KS]

for details) ExtkA(X, Y) = Rk
HomA(X, Y) ≃ HomD(A)(X, Y[k]).
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We briefly recall a few results about spectral sequences. For proofs

one may consult [GM] and [Wei]. For a more careful treatment we

suggest [Mur], which follows [Gro, OIII-§].

First we give a few definitions. Let’s fix an abelian categoryA. RecallFiltrations
that a subobject of an object X is simply a monomorphism W ↪ X. We
define a relation on subobjects. Given two subobjects of X, α ∶ X ↪ X,
α ∶ X ↪ X, we say that α precedes α, and o�en write X ⊂ X, if the
first factors through the second

X

X

X

α

α

andwe also say that α follows α. We say that two subobjects are equivalent

if they mutually precede each other. Given a family of subobjects {α i ∶
X i ↪ X}i we define an intersection of the family as a subobject α ∶W ↪ X
such that

(I.) α precedes all α i ;

(I.) for any other subobject α′ ∶W′ ↪ X, preceding all α i , α
′ precedes

α.

Any two intersections are equivalent (in the sense above). We o�en write

⋂i X i for the intersection of the α is. Dually we define a union of the α is

as a subobject β ∶ Y ↪ X such that

(I.) β follows all α i ;

(I.) any other subobject following all α i follows β.

Any two unions are equivalent. We o�en write ⋃i X i for the union of the

α is.

A (decreasing) filtration of an object X ofA is a sequence of subobjects
of X

⋯ ⊃ FX ⊃ FX ⊃ ⋯FpX ⊃ ⋯

and we say that it is regular if⋂p F
pX =  and⋃p F

pX = X. We say that it
is finite if it is stationary on both sides: i.e. there exist p and p such that
FpX = FpX, for all p ≤ p, and FpX = FpX, for all p ≥ p.

⋯ = Fp−X = FpX ⊃ ⋯ ⊃ FpX = Fp+ = ⋯

A spectral sequence E = (Ep,q
r , E

n) (starting on page r) is given by theSpectral Sequences
following pieces of data.

(I.) For every r ≥ r, there is given a collection Er (called the r-th page)
of objects E

p,q
r ∈ A, where p, q ∈ Z.
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(I.) �ere are given morphisms d p,qr ∶ Ep,q
r → Ep+r ,q−r+

r , such that

d p+r ,q−r+r d p,qr = ,

where p, q ∈ Z.

(I.) If we denote Hp,q(Er) = Ker d p,qr / Im d p−r ,q+r−r (the zeroth coho-

mology of the complex E
p+⋅,q−⋅+
r ), there are given isomorphisms

α
p,q
r ∶ Hp,q(Er)→ Ep,q

r+ .

(I.) For any p, q, there exists r∗ = r∗(p, q) such that, for any r ≥ r∗, the
differentials d p−r ,q+r−r and d p,qr vanish. In this⁵ case, themorphisms

α
p,q
r , identify all E

p,q
r , for r ≥ r∗.

E
p,q
r∗ ≃ Ep,q

r∗+ ≃ E
p,q
r∗+ ≃ ⋯

We denote this object by E
p,q
∞ .

(I.) �ere are given a decreasing regular⁶ filtration

⋯ ⊃ FpEn ⊃ Fp+En ⊃ ⋯

on each En and isomorphisms

β
p,q ∶ Ep,q

∞ → FpEp+q/Fp+Ep+q
.

We say that the spectral sequence E converges to (En), or that (En) is the
limit of E, and write

E
p,q
r Ô⇒ Ep+q

.

A way to think of the information extracted out of a spectral sequence

E
p,n−p
r Ô⇒ En ,

is that the objects En are built up of extensions of the objects Ep,n−p
∞ , which

are cohomologies of cohomologies of cohomologies of the complexes E⋅,⋅r .

We can form the additive category of spectral sequences by defining

morphisms f ∶ (Ep,q
r , E

n) → (E′r
p,q
, E′

n) as collections of maps f p,qr ∶
E
p,q
r → E′r

p,q
, f n ∶ En → E′n , commuting with the structural morphisms

and compatible with filtrations.

I.. Remark We notice that condition (I.) is satisfied whenever the starting
page Er has vanishing objects outside an area of the form p ≥ p , q ≥ q
(or equivalently p ≤ p , q ≤ q). In fact, if an object Ep,q

r =  vanishes
then all objects E

p,q
r+k =  vanish for k ≥ . In this case, if we fix p and q,

as the page number increases we are bound to reach an r ≥ r such that
the differential d p−r ,q+r−r starts from a zero object and d p,qr ends on a zero

object, hence they both vanish.

Moreover, in this particular case, we are assured that the filtrations

{FpEn}p are all finite.

 �e actual definition of a spectral sequence does not require the vanishing of any differential,
but introduces additional filtrations. Since it is common that a spectral sequence satisfies
condition (I.), we prefer to give this simplified definition (as done in [GM]).

 In the general definition the regularity assumption of the filtrations is not present either.
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We say that a spectral sequence E degenerates at page r∗ if all differentials
d p,qr vanish, for r ≥ r∗. In such a case, Ep,q

∞ = Ep,q
r∗ for all p, q.

I.. T (T G S S)
Let F ∶ A→ B, G ∶ B → C be two le� exact functors and letJ be aK+(G)-
injective subcategory. AssumeA and B have enough injectives and assume
that F(IA) ⊂ J , viz. any bounded below complex of injectives maps to an
element of J . �en, for any complex A⋅ ∈ D+(A) there exists a spectral
sequence

E
p,q
 = Rp

G(Rq
F(A⋅))Ô⇒ Rp+q(G ○ F)(A⋅).(I.)

As a very special case we have the following useful spectral sequence.

I.. C
Let F ∶ A → B be a le� exact functor and let A have enough injectives.
�en, for any A⋅ ∈ D+(A), there exists a spectral sequence

E
p,q
 = Rp

F(Hq(A⋅))Ô⇒ Rp+q
F(A⋅).(I.)

Proof
It is precisely the spectral sequence (I.), in which F = IdA and we relabel
G = F. ³

Another useful spectral sequence is the following (see [Huy, R

.]):

E
p,q
 = Rq

F(Ap)Ô⇒ Rp+q
F(A⋅),(I.)

where F ∶ A→ B is le� exact,A has enough injectives and A⋅ ∈ D+(A).
I.. T

Let F ∶ K+A → K+B be a ∆-functor admitting a right localization RF ∶
D+A→ D+B. AssumeA has enough injectives.

(I.) Suppose C is a thick subcategory of B, Ri
F(A) ∈ C for all i ∈ Z

and A ∈ A, and that there exists an n ∈ Z such that R j
F(A) =  for

all j < n and A ∈ A.�en RF factors throughD+
CB.

D+A D+B

D+
CB

RF

(I.) Suppose RF(A) ∈ DbB for all A ∈ A, then RF factors through
DbB.

DbA D+B

DbB

RF
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Proof
Both follow from the spectral sequence (I.). �e first assertion is a

consequence of the thickness of C, which by definition implies that C is
abelian and closed under extensions. Let X⋅ ∈ D+A be a bounded below
complex. We need to show that Hn(RF(X⋅)) = Rn

F(X⋅) ∈ C. Consider
the spectral sequence Rp(Hq(X⋅)) ⇒ Rp+q(X⋅). Now, Hq(X⋅) is an
object of A and by hypothesis Ep,q

 = Rp
F(Hq(X⋅)) ∈ C, we have that

E
p,q
r ∈ C, for all r ≥ , since C is closed under coholomogy of its complexes.
Hence E

p,q
∞ ∈ C, and we recall that the Ep,q

∞ ≃ FpEp+q/Fp+Ep+q , where

FpEn is the filtration given by the spectral sequence. By our hypotheses

and by R I.. the filtration of the limit Ep+q = Rp+q(X⋅) is finite,
say

E
p+q = FhEp+q ⊃ ⋯ ⊃ Fh+kEp+q = ,

and there exact sequences

→ FpEp+q → Fp+Ep+q → Fp+Ep+q/Fp+Ep+q → .

We claim that all FpEp+q belong to C. But this is simply a consequence of
the finiteness of the filtration (which starts from  ∈ C) and of the thickness
of C and of the fact that the quotients Fp+Ep+q/Fp+Ep+q already belong

to C. Hence, Rp+q(X⋅) = Ep+q = FhEp+q ∈ C, thus proving our claim.
For the second assertion one proceeds similarly, showing that for any

X⋅ ∈ DbA the complex RF(X⋅) has bounded cohomology, i.e. Rn
F(X⋅)

vanishes for large ∣n∣. Again this is a consequence of the spectral sequence
(I.). ³





IIDERIVED FUNCTORS IN ALGEBRAIC GEOMETRY

C

II. Coherent Sheaves 
II. A Selection of Derived Functors 
II. Useful Isomorphisms 
II. Fourier-Mukai Transforms 

In this chapter we present the essential results from algebraic geometry

that are needed for the sequel. We omit some of the proofs and refer

to the literature. As a reference we strongly advise [Huy], but also the

classic [Har]. For the more standard material (viz. not involving derived

categories) we refer to [Liu] and of course [Har].

.  

To avoid confusion with sheaf coholomogy H⋅(X, -)we use the notation Notation
below. Given a complex of sheavesF ⋅ ∈ C(OX-Mod), on a ringed space
X, we writeH i(F ⋅) for the i-th cohomology of the complexF ⋅ (which

is again a sheaf).

We recall a few important facts about schemes that we need.

II.. B T
Let (X,OX) be a noetherian scheme.�e following are true.

. An OX-module F is quasi-coherent if and only if for every open
affine subset U ⊂ X of X, F (U)∼ ≃ F ∣U. �e same holds for a
coherent sheafF if we add the condition ofF ∣U being finitely gen-
erated.

. A direct sum of quasi-coherentOX-modules is quasi-coherent.

. A finite direct sum of coherentOX-modules is coherent.

. IfF and G are (quasi-)coherentOX-modules then so isF ⊗OX G .

. IfF is coherent and G is (quasi-)coherent thenH omOX(F ,G ) is
(quasi-)coherent.

. Let φ ∶ F → G be amorphism of (quasi-)coherentOX-modules then
Kerφ, Cokerφ, Imφ and Coimφ, are (quasi-)coherent.

. Let →F → G →H →  be an exact sequence ofOX-modules. If
two of them are (quasi-)coherent then so is the third.

. QcohX and CohX are abelian subcategories of OX-Mod. Further-
more:
• �e categoryQcohX is a thick subcategory ofOX-Mod, the cat-
egory of sheaves ofOX-modules;





     

• �e category CohX is a thick subcategory of QcohX.

. �e categoryOX-Mod has enough injectives.

. �e category QcohX has enough injectives. More precisely, every
quasi-coherent sheafF admits an injection in a quasi-coherent sheaf
I , which is injective as anOX-module.

Proof
For . through . see [Liu, T .., .., ..], . is a conse-

quence of ., ., . and . For . see [Har, P III..]. For

. see [Har, T II..]. ³

II.. Convention From now onwards, all schemes are assumed to be noethe-
rian.

II.. Notation For a scheme X we denote by D∗
X the derived category of

coherent sheavesD∗CohX, where ∗ = ub,+,−, b. Again for scheme X we
adopt the following conventions:

D∗
qcX = D∗

QcohXOX-Mod

(complexes of sheaves with quasi-coherent cohomology),

D∗
cX = D∗

CohXQcohY

(complexes of quasi-coherent sheaves with coherent cohomology),

where as usual ∗ = ub,+,−, b.

II.. T
Let X be a scheme.

(II.) �e inclusion QcohX ↪ OX-Mod induces an equivalence

D∗QcohX
∼Ð→ D∗

qcX

for ∗ = +, b.

(II.) �e inclusion CohX ↪ QcohX induces an equivalence

Db
X

∼Ð→ Db
cX.

Proof
As a particular case of T I.. one has (II.). For (II.) see [Huy,

P .]. ³

.     

Following [Huy, S .] we discuss the derived versions of the

functors we employ in the sequel.

II.. Convention From now onwards all schemes and morphisms are consid-
ered to be over a fixed field k. Given two schemes X, Y we write X × Y for
the product over k: X ×k Y.
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�e general idea is to start with a given le� (or right) exact functor

F ∶ QcohX → B,

defined on quasi-coherent sheaves, and then to restrict the domain of its

derived version RF to the bounded derived category of coherent sheaves,
finally one uses T I.. and II.. to try and confine the codomain

of RF to a subcategoryDb
CB, for some thick subcategory C of B.

�e first functor we treat is the global sections functor. Let X be a scheme. Sheaf Cohomology
�e global sections functor

Γ(X, -) = Γ ∶ QcohX Ð→ k-Mod

F z→ Γ(X,F ) = F (X)

is le� exact. Since Qcoh has enough injectives we obtain

RΓ ∶ D+QcohX Ð→ D+
k-Mod.

For a sheaf F , the module Ri
Γ(F ) is denoted by H i(X,F ) and it is

called the i-th sheaf cohomology group ofF . For an honest complex of
sheavesF ⋅, themodulesRi(X,F ⋅) are classically called hypercohomology
groups, and again we denote them by H i(X,F ⋅). Since every complex of
vector spaces splits we have a non-canonical isomorphism

RΓ(F ⋅) ≅⊕
i
H

i(X,F ⋅)[−i]

inD(k-Mod).
To restrict to the bounded subcategory we use the following theorem.

II.. T (G)
LetF be a quasi-coherent sheaf on a noetherian scheme X.�en

H
i(X,F ) = 

for i > dimX.
Proof
See [Har, T III..]. ³

Hence, by T I.. the following is well defined:

RΓ ∶ DbQcohX Ð→ Db
k-Mod.

�e passage to the coherent realm has an additional property.

II.. T
Let X be a proper scheme over a field k and letF be a coherent sheaf on X.
�en the cohomology groups H i(X,F ) have all finite dimension over k.
Proof
It is a straightforward consequence of T II... ³

�us if X is proper over k we finally obtain

RΓ ∶ Db
X → Db

k-Modf
.

We summarize the above discussion with a diagram.



     

D+QcohX D+
k-Mod

DbQcohX Db
k-Mod

DbCohX Db
k-Modf

RΓ

X proper

Where, given a le� noetherian ring R, we denote by R-Modf
the thick

abelian subcategory of R-Mod whose objects are finitely generated mod-
ules. We use an analogous notation for right modules.

We now move on to pushforwards. Let f ∶ X → Y be a morphism ofDirect Image
schemes.�e direct image (or pushforward or pushdown)

f∗ ∶ QcohX Ð→ QcohY

is a le� exact functor which yields

R f∗ ∶ D+QcohX Ð→ D+QcohY.

Given a complex of quasi-coherent sheaves F ⋅ on X, we define its i-th
higher direct image as Ri f∗(F ⋅), which by definition is just

H i(R f∗(F ⋅))

the i-th cohomology sheaf of the complex R f∗(F ⋅).
We now want to restrict to the bounded derived category.

II.. T
Let f ∶ X → Y be a morphism of noetherian schemes and letF be a quasi-
coherent sheaf on X. �en the higher direct images Ri f∗F are trivial for
i > dimX.
Proof
It is a consequence of [Har, P III..] and of T

II...�e first theorem states that the sheaf Ri f∗F is none other than

the sheafification of the presheaf

V z→ H i( f −V,F ∣ f −V),

and using the second theorem we conclude. ³

�us the restriction of the derived pushdown becomes

R f∗ ∶ DbQcohX Ð→ DbQcohY.

To deal with coherent sheaves we use the following fact.

II.. T
Let f ∶ X → Y be a proper morphism of schemes, where Y is noetherian.
�en, for any coherent sheafF , the higher direct images Ri f∗(F ) are co-
herent. In particular f∗ ∶ CohX → CohY is well-defined and le� exact.
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Proof
See [Gro, T III... and C III...]. ³

In conclusion, for a proper morphism f , we have

R f∗ ∶ Db
X Ð→ Db

Y.

We summarize the above with a diagram.

D+QcohX D+QcohY

DbQcohX DbQcohY

DbCohX DbCohY

R f∗

f proper

II.. Remark If f ∶ X → Speck is the structural morphism, one notes that
the direct image functor is particularly simple. �e category of quasi-

coherent sheaves over k is equivalent to the category of modules over

k.�rough this equivalence the direct image functor corresponds to the

global sections functor, in other words:

R f∗ = RΓ ⊗k Ok = H⋅(X, -)⊗k Ok .(II.)

Given two morphisms of schemes f ∶ X → Y and  ∶ Y → Z, we know
that ( ○ f )∗ = ∗ ○ f∗.�erefore we have a morphism

R( ○ f )∗ = R (∗ ○ f∗)Ð→ R∗ ○R f∗(II.)

to ensure that it is in fact an isomorphism we use flasque (a.k.a. flabby)

sheaves, which form another class of f∗-injective objects in QcohX.

II.. L
On a ringed space, any injective OX-module is flasque. Any flasque sheaf
F on X is f∗-acyclic for any morphism f ∶ X → Y, i.e. Ri f∗F =  for
i > . Moreover f∗F is again flasque.

Proof
See [Huy, L .]. ³

Indeed the morphism (II.) is an isomorphism.

Deriving inverse images (or pullbacks) presents no difficulty to us as we Inverse Image
only deal with flat morphisms.

II.. D/L
Amorphism of schemes f ∶ X → Y is flat if for every x ∈ X the induced map
f ♯x ∶ OY, f (x) → OX,x is flat. If f is flat, then f ∗ is an exact functor.
Proof
As a result of being le� adjoint to the direct image functor f∗, the pullback
f ∗ is in general right exact. Let f be a flat morphism and letF → G be
an injective morphism of sheaves on Y. Consider the complex

Ð→ f ∗F Ð→ f ∗G



     

and its localization at any x ∈ X

Ð→F f (x) ⊗OY, f (x) OX,x Ð→ G f (x) ⊗OY, f (x) OX,x(II.)

where theOY, f (x)-module structure onOX,x is precisely given from f ♯x .
Note that (II.) is obtained by tensoring the exact sequence

Ð→F f (x) Ð→ G f (x)

with the flat moduleOX,x , hence (II.) is exact, which is enough to prove
that f ∗ is exact. ³

�anks to the above lemma we do not need to search for an f ∗-projective
class of objects, since f ∗ is automatically derivable and we denote L f ∗
simply by f ∗.

II.. Remark In the simple case where f ∶ X → Speck is the structural mor-
phism the inverse image is quite simple. A quasi-coherent sheaf on k is

of the form V ⊗k Ok, where V is a k-vector space.�e inverse image of
such sheaf is simply

f ∗(V ⊗k Ok) = V ⊗k OX .(II.)

We have two well-defined bifunctorsLocal Hom

H omX ∶ (CohX)○ ×QcohX Ð→ QcohX

H omX ∶ (CohX)○ × CohX Ð→ CohX

which in turn can be extended to complexes and pass on to the homotopic

category:

H om⋅
X ∶ (K−CohX)○ ×K+QcohX Ð→ K+QcohX

H om⋅
X ∶ (K−CohX)○ ×K+CohX Ð→ K+CohX

where we use the ⋅ to remind us that it is indeed a complex. A�er chasing

around the identifications among opposite categories and complexes one

notices that, given two complexes of sheavesF ⋅ and G ⋅, one has

H omn
X(F ⋅

,G ⋅) =⊕
i

H omX(F i
,G i+n)

with differential given by

dn ∣Hom(F i ,G i+n)
(φ) = φ ○ d i−F i + (−)id i+nG i+n ○ φ.

II.. Remark UsuallyH omn is defined as the complex

H omn(F ⋅
,G ⋅) =∏

i
H om(F i

,G i+n).

However, in our cases the sums and products over i are actually finite and
thus coincide.

Using the following lemma we may derive, obtaining

RH om⋅
X ∶ (D−(CohX))○ ×D+QcohX → D+QcohX
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II.. L
Let I ⋅ be a bounded below complex of injective sheaves and letF ⋅ be an-
other complex of sheaves. If F ⋅ or I ⋅ is acyclic then H om⋅(F ⋅ ,I ⋅) is
acyclic.

Proof
See [Har, S II.]. ³

To restrict to bounded complexes we make some further assumptions

on X. We assume X to be projective over k (and hence of finite dimension)

and regular.

II.. L
IfX is regular and projective, then any bounded complex of coherent sheaves
is quasi-isomorphic to a bounded complex of locally free sheaves.

Proof
Since X is projective, every coherent sheaf is a quotient of a locally free

sheaf (see [Har, C II..]). We now want to use L I..,

so we must prove that there exists a natural number d such that for any
exact sequence of coherent sheaves

→F → G → ⋯→ Gd

where theGis are locally free, thenF is also locally free. We fix d ≫ dimX.
Since being locally free can be verified on stalks, we just need to prove that

for any x ∈ X the moduleFx is locally free. We recall that for any x ∈ X,
dimOX,x = dimp X ≤ dimX.�us we reduce to the case in which

→ F → G → ⋯→ Gd

is an exact sequence of R-modules, where R is a noetherian regular local

ring with dimR ≤ dimX and the G is are free (and therefore projective)

modules.

First we notice that every projective module over R is free (see [Eis,

T A.]). Let M be Coker(Gd− → Gd) and let P⋅ be a projective
resolution of F (which exists since R-Mod has enough projectives).

⋮

P−

P

 F G ⋯ Gd− M 



ε

Hence, through ε, we obtain a projective resolution of M, which starts

with the G is and with the P
− js. We recall that the global dimension of

a ring R is the supremum of the lengths of all projective resolutions of

modules over R. We use the following facts:



     

• If R is regular local ring of dimensionm, then the global dimension
of R is m (see [Eis, C .]).

• If R is a ring with global dimension m, then for any projective
resolution P⋅ of any module M, the module Im(P−m → P−(m−)) is
projective (see [Eis, E A.]).

�us there exists an integer k ≥  such that Im(Gk → Gk+) is projective,
and therefore free. Hence we have found an exact sequence

→ F → Q → ⋯→ Qr → 

where the Q is are free. We claim that it now follows that F is also free, we

use induction on r.
If r =  then F is isomorphic to Q and hence it is free. Assume it is true

for r − . Consider N = Ker(Qr− → Qr) = Im(Qr− → Qr−). Since Qr
is projective, the sequence

→ N → Qr− → Qr → 

splits, therefore N is a direct summand of a projective module, hence it is

projective and thus free. As a consequence we have an exact sequence

→ F → Q → ⋯→ Qr− → N → 

and, by the induction hypothesis, we finally have that F is a free module

over R. ³

We summarize with a diagram.

(D−CohX)○ ×D+QcohX D+QcohX

(D−CohX)○ ×D+CohX D+CohX

(DbCohX)○ ×DbCohX DbCohX

RH om⋅

X as above

One defines

Ext iX(F ⋅
,G ⋅) = RiH om⋅(F ⋅

,G ⋅).

As a special case one has the derived dual of a complexF ⋅ ∈ D−QcohXDualization

(F ⋅)∨ = RH om(F ⋅
,OX) ∈ D+QcohX.

Of course the case that is of most interest to us is whenF ⋅ is bounded

and coherent: one has

F ⋅∨ ∈ Db
X

if X is regular.
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For tensor products we procede similarly as with local homs. One starts Tensor Product
from the functor

-⊗OX - ∶ OX-Mod ×OX-ModÐ→ OX-Mod

which yields

⊗OX ∶ K−OX-Mod ×K−OX-ModÐ→ K−OX-Mod,

where

(F ⋅ ⊗OX G ⋅)n = ⊕
p+q=n

F p ⊗OX G q

with differential

d∣F p⊗G q = d
p
F ⋅ ⊗  + (−)p⊗ dqG ⋅ .

To derive the tensor product we first use flat sheaves.

II.. L
EveryOX-module is a quotient of a flatOX-module.

Proof
We recall that ifS is a sheaf on an open subset U of X then its extension
by zero outside U is the sheafification of the presheaf

V z→ { S (V) if V ⊂ U,
 otherwise.

We also recall the stalks of the extension ofS areSx , on all x ∈ U, and
vanish outside of U. Because of this last property, if we considerFU to be

the extension by zero of the restrictionOX ∣U of the structure sheaf on U,
it is easy to check thatFU is a flatOX-module.
Again, we consider a sheaf S on X. Let s ∈ Γ(Us ,S ) be a section.

Consider the sheaf homomorphism

φs ∶ FUs →S

induced by the presheaf morphism

(φs)V(λ) = λ ⋅ s∣V if V ⊂ Us ,

(φs)V =  otherwise.

We notice that for all x ∈ Us , the germ sx lies in the image of (φs)x .
�e morphisms φs thus induce a morphism

F =⊕
s

FUs

φÐ→S

where s rangese through all the sections ofS , which is clearly surjective
on stalks. Since the direct sum of flat sheaves is flat we have constructed a

surjective morphism from a flat sheaf ontoS . ³



     

Since flat sheaves form (essentially by definition) the class ⊗OX -projective
sheaves we obtain

⊗L
OX

∶ D−(OX-Mod) ×D−(OX-Mod)Ð→ D−(OX-Mod).

Since the tensor product is right exact in both variables, we do not use

injective objects, thus wemove on directly to coherent sheaves. We remind

that the tensor product of two coherent sheaves is again coherent. Again,

we recall that if X is projective then CohX has enough locally frees. If we
denote byL the full subcategory of CohX consisting of locally free sheaves,
we have that the pair (L,L) is ⊗-projective. Hence we may derive on the
le� the tensor product by resolving by locally free sheaves.

If we assume moreover X to be regular we recall that any bounded

complex of coherent sheaves is quasi-isomorphic to a bounded complex

of locally free sheaves. As a consequence we can restrict to bounded

complexes. We conclude with the usual diagram.

D−(OX-Mod) ×D−(OX-Mod) D−(OX-Mod)

D−CohX ×D−CohX D−CohX

DbCohX ×DbCohX Db
X

⊗
L
OX

X projective

X as above

.  

�ere are some relationships among the derived functors above. Again

we assume X to be regular and projective over k. �e simplest one weTensor-Pullback
Compatibility encounter is the compatibility between inverse images and tensor products.

II.. L
Let f ∶ X → Y be a morphism of ringed spaces. IfF and G are sheaves on
Y then there is an isomorphism

f ∗F ⊗ f ∗G ≃ f ∗(F ⊗ G ).

IfF is locally free then f ∗F is locally free.

Proof
�e first statement is essentially due to the fact that the tensor product

commutes with colimits in the category of modules (see [KS, P-

 ..]).�e second assertion is a straightforward consequence of the

following. By definition

f ∗OY = f ●OY ⊗ f ●OY OX ≃ OX

where f ● is the le� adjoint of f∗, when considering sheaves of abelian
groups and not justOY-modules. ³
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To define ⊗L, on a projective scheme X, we used locally free sheaves.�e

above lemma thus yields the isomorphism:

f ∗(-)⊗L f ∗(-) ∼Ð→ f ∗(-⊗L
-).(II.)

�e second one we study is the projection formula. Projection Formula

II.. L
Let f ∶ X → Y be a morphism of ringed spaces and letF and G be sheaves
on X and Y respectively. If G is locally free then we have an isomorphism

f∗(F )⊗ G ≃ f∗(F ⊗ f ∗G ).

Proof
Using the unit and counit of the adjunction f ∗ ⊣ f∗ weobtain the following
chains of morphisms

f∗F ⊗ G Ð→ f∗ f ∗( f∗F ⊗ G )
≃ f∗( f ∗ f∗F ⊗ f ∗G )

Ð→ f∗(F ⊗ f ∗G ).

We now show that if G is locally free then the composition of the above
maps is an isomrphism. Since the question is local, and we already have a

globally defined map, we suppose G = On
Y .�e above map translates into

f∗F ⊗On
Y ≃ ( f∗F )n Ð→ ( f∗ f ∗ f∗F )n

Ð→ ( f∗F )n ≃ f∗F n

≃ f∗(F ⊗On
X) ≃ f∗(F ⊗ f ∗On

Y)

which is an isomorphism (it is essentially equivalent to saying that f ∗ is
le� adjoint to f∗). ³

Again we recall that to define ⊗L (on a projective scheme) we used locally

free sheaves, therefore the following isomorphism is a consequence of the

above lemma:

R f∗(-)⊗L
-

∼Ð→ R f∗(-⊗L f ∗(-)).(II.)

Let us begin by recalling a lemma. Flat Base Change

II.. L
Flatness and properness are stable under base change.

Proof
See [Liu, P ..] and [Liu, P ..]. ³

Consider a cartesian diagram

X ×Z Y Y

X Z

v



u

f



     

where f (and hence ) is proper. Using the inverse-direct image adjunction
we obtain a functorial morphism

u∗ f∗
u∗εÐ→ ∗∗u∗ f∗ = ∗(u)∗ f∗

= ∗( f v)∗ f∗

= ∗v∗ f ∗ f∗
∗v∗δÐ→ ∗v∗

where ε is the unit relative to  and δ is the counit relative to f . Assume
moreover u (and consequently v) to be flat, and letF be a quasi-coherent

sheaf on Y.�en [Liu, E .] yields the flat base change isomor-
phism

u∗ f∗ Ð→ ∗v∗

which passes on to the derived level

u∗R f∗
∼Ð→ R∗v∗ .(II.)

II.. Remark A special case we will use later is the following. Consider the
diagram

X × Y X

Y k

p

q

u

f

and an objectF ⋅ ∈ Db
X. Combining (II.), (II.) and (II.) one obtains

Rq∗p∗F ⋅ = u∗R f∗F ⋅ = u∗(H⋅(X,F ⋅)⊗k Ok)(II.)

= H⋅(X,F ⋅)⊗k OY .

. - 

In this section we introduce the concept of Fourier-Mukai transform.

We do not delve deeply into the theory, wemerely touch upon its definition

and discuss the case needed in the next chapter.

Let’s start with an informal discussion (cf. [�o, S ]). Con-

sider an integrable function f ∈ L (Rn ,C) defined onRn with values inFunction Transforms
the complex numbers.�e Fourier transform of f

f̂ ∶ Rn → C

is defined as

f̂ (y) = ∫
Rn
f (x) ⋅ e−i⟨x ,y⟩dx .(II.)

Let’s write the exponential asK so that (II.) becomes

f̂ (y) = ∫
Rn
f (x) ⋅K(x , y)dx .(II.)



II. -  

Instead of the exponential we might take any other suitable function K
in (II.); for example K ∈ Cc(Rn × Rn ,C) (continuous with compact
support). We can abstract further by considering, instead of two copies of

Rn , any pair of reasonable¹ measure spaces X and Y. Consequently, for

suitable f and K, we may define the function transform with kernel K of
f as

f̂ (y) = ∫X f (x) ⋅K(x , y)dx .(II.)

Since we wish to stress the dependence on the kernel we change notation

and use ΦK( f ) instead of f̂ .
�e product X × Y comes equipped with two projections: p and q.

X × Y

X Y

p q

Let’s introduce another two notations. Given a complex-valued function

f on X we define the pull-up by p as

p∗ f (x , y) = f ○ p(x , y) = f (x),

and given a complex-valued integrable function F on the product X × Y
we define the push-down by q as

q∗F(y) = ∫X F(x , y)dx .
In other words the pull-up of a function f on X is simply a stack of copies
of f on the product, constant along Y; the push-down of a function F on
the product associates to every point y ∈ Y the integral of F on the fiber
q−(y). With this last bit of notation in hand we may rewrite (II.) as

ΦK( f ) = q∗ (p∗ f ⋅K) .(II.)

Of course we might as well have considered the pull-up by q and the
push-down by p, which gives the opposite transform

Φ
′
K( f ) = p∗ (q∗ f ⋅K) .

Results concerning Fourier transforms may be expressed in this new

language. For example the inversion formula; for anL  function onRn

admitting anL  Fourier transform let

(x) = ( 
π

)
n

∫
Rn
f̂ (y) ⋅ e i⟨x ,y⟩dy

be the antitransform of f . �en the inversion formula states that f = 
almost everywhere, which immediately translates to

Φ
′
H ○ΦK( f ) = f almost everywhere,



     

for appropriate kernelsK andH.
Coming back to sheaves, we formally transliterate the above definitionFourier-Mukai

Transforms of transform into the setting of derived categories of coherent sheaves. Let

X and Y be two schemes, proper over k, and consider their product X×Y.
We remark that since the structural morphisms from X and Y to Speck

are flat, the projections p and q are also flat.

II.. D
Given an elementK ∈ Db(X×Y) we define the Fourier-Mukai transform
with kernelK to be the functor

ΦK ∶ Db
X Ð→ Db

Y

F ⋅ z→ Rq∗ (Lp∗F ⋅ ⊗L K ) .

A functor as such is sometimes called an integral transform, gaining the
full title of Fourier-Mukai only when it is an equivalence.

II.. Remark Since we only deal with flat morphisms the definition of Fourier-
Mukai transform becomes

Rq∗ (p∗F ⋅ ⊗L K ) .

Let us give at once an example. Consider a morphism f ∶ X → Y.�e
maps IdX and f uniquely determine a map

ι = IdX × f ∶ X → X × Y.

Let OΓf = ι∗OX be the direct image of the structure sheaf of X through
ι (viz. it is the structure sheaf of the graph Γf of f ). Consider now the
Fourier-Mukai transform with kernelOΓf :

ΦOΓ f
= Rq∗(p∗-⊗L OΓf )

= Rq∗(p∗-⊗L
ι∗OX)

(projection formula) = Rq∗Rι∗(ι
∗p∗-⊗L OX)

(pι = IdX , qι = f ) = R f∗

and the opposite transform

Φ
′
OΓ f

= Rp∗(q∗-⊗L OΓf )

(projection formula) = Rp∗Rι∗(ι
∗q∗-⊗L OX)

(pι = IdX , qι = f ) = f ∗ .

�us they are simply the direct image and the inverse image through f .
As a special case we notice the following. Let X = Y and f = IdX , so that
O∆ is the structure sheaf of the diagonal, then

ΦO∆ = IdDbX = Φ′O∆ .(II.)

To conclude we note that a Fourier-Mukai transform, being the compo-

sition of ∆-functors, is itself a ∆-functor.

 For example we request the spaces to be σ-finite, in order to be able to apply the Fubini-
Tonelli theorem (see [Rud, T .]).



IIIBEILINSON’S THEOREM

C

III. A Resolution for the Diagonal 
III. Fourier-Mukai Kernels 
III. Triangulated Machinery 
III. �e First Equivalence 
III. �e Second Equivalence 

In this chapter we finally come to investigate the structure of CohP,
the category of coherent sheaves on projective space. More precisely we

studyDb(CohP), the bounded derived category of CohP, by means of a
resolution of the structure sheaf of the diagonal. Applying the machinery

of Fourier-Mukai transforms we obtain two equivalences of Db
P with

simpler, more algebraic, triangulated categories.

Let P = P(V) = Proj SymV∨ be the projective space associated with Notation
an (n + )-dimensional vector space V over a field k. We write D for
Db(CohP). Let p and q be the projections

P ×P

P P

p q

from the product P ×P onto the first and second factor respectively. Let
O = OP denote the structure sheaf of P, let Ω = ΩP/k be the sheaf
of differentials over k and let O∆ be the direct image of O through the
diagonal map (i.e. O∆ is the structure sheaf of the diagonal ∆ ⊂ P ×P).
IfF and G are sheaves on P, we define the exterior tensor product ofF
and G to be the sheaf on the product P ×P

F ⊠ G = p∗F ⊗ q∗G .

To ensure that we can employ the machinery developed in the last Projective Space
chapter we make a few remarks (see [Liu]).�e schemes P and P ×P
are notherian, of finite dimension, projective over k, smooth and hence

regular.�e structural morphism P→ Speck is proper and flat, whence
it follows that the projections

p, q ∶ P ×PÐ→ P

are also proper and flat.�us we can apply all the results of the previous

chapter.
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In this section we will construct a finite locally free resolution of the

structure sheaf of the diagonalO∆ . It is a special feature of projective space
that such a resolution exists. For the machinery of Koszul complexes we

refer to [FL, IV§-].

III.. T (B)
Consider the locally free sheaf

S = O(−) ⊠Ω()

on P ×P.�ere is a finite locally free resolution of the sheafO∆ on P ×P,
given by

→
n
⋀S → ⋯→


⋀S →S → OP×P → O∆ → 

Proof
We sketch a first proof and then give second proof.

We recall thatO(−) is the tautological bundle, whose fiber at a pointFirst Proof
l ∈ P is l itself, considered as a subspace of V.�e sheaf Ω() is the dual
of T (−), the tangent sheaf twisted by −. Its fiber at l consists of the
linear maps from V to k vanishing on l . By pulling these two sheaves back,
via the two projections p and q, we obtain the sheaf S , whose fiber at
(l , l) ∈ P ×P is the tensor product of l with the space of linear maps
from V to k vanishing on l.
We may therefore construct the evaluationmorphism

ε ∶ S → OP×P

defined as (the k-linear extension of) the evaluation map

ε(v ⊗ φ) = φ(v)

where v is an element of l and φ vanishes on l.
One observes at once that ε(l , l) ceases to be surjective if and only if

l = l.�e image of ε and the ideal sheaf of the diagonal ∆ ⊂ P ×P cut
out the same subspace. It remains to prove that they indeed determine

the same scheme. To do that, one works locally (se second proof below).

�ereforeO∆ is the cokernel of ε, and we have the exact sequence

S OP×P O∆ 
ε

which in turn yields the Koszul complex

→
n
⋀S → ⋯→


⋀S →S

ε→ OP×P → O∆ → 

where the map

p

⋀S Ð→
p−

⋀S



III.      

is given by

s ∧⋯ ∧ sk z→
p

∑
j=

(−) j−ε(sp)s ∧⋯ ∧ ŝ j ∧⋯ ∧ sk .

Since the diagonal has codimension n inP×P the above complex is exact.
We may therefore speak of a Koszul resolution.
Alternatively, we may proceed as follows. We fix an isomorphism of Second Proof

V with kn+, thus P becomes the Proj of a polynomial ring. We consider

three copies of P all labeled with different variables:

Px = Projk[x , . . . , xn]
Py = Projk[y , . . . , yn]
Pz = Projk[z , . . . , zn]

and we consider the product Px ×Py with projections

Px ×Py

Px Py

q p

Following the proof of [Har, T II..] let’s consider the Euler

sequence

Ð→ ΩP()Ð→ On+
P Ð→ OP()Ð→ .

We want to take the first morphism on Px and the second morphism on

Py , pull them back through q and p respectively to obtain the map below

q∗ΩPx ()→ q∗On+
Px

≃ On+
P×P ≃ p∗On+

Py
→ p∗OPy()(III.)

which in turn can be tensored by p∗OPy(−) yielding a homomorphism

p∗OPy(−)⊗OP×P q∗ΩPx ()Ð→ OP×P .(III.)

We claim that the image of (III.) is the ideal sheaf determining the diago-

nal. To prove our claim we work on local coordinate patches.

Denote by e i the standard section (, . . . , , , , . . . , ) of On+. On

U = {x i ≠ } we have a basis of Γ(U, ΩPx ()) such that under the first
morphism in the Euler sequence the k-th basis element maps to

(ek −
xk
x i
e i)

for k ≠ i. On Py the second morphism of the Euler sequence is precisely

given by

ek z→ yk .
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�us, if we work on the coordinate patch U × V = {x i ≠ , y j ≠ }, the
morphism (III.) maps the k-th basis element of the global sections of
q∗ΩPx () to

yk −
xk
x i
y i = y j (

yk
y j
− y i
y j
xk
x i

) .

Tensoring by p∗OPy(−), as in (III.), we again obtain a basis of the sec-
tions over U × V of the first sheaf such that the k-th basis element maps
to

yk
y j
− y i
y j
xk
x i

(III.)

for k ≠ i.
To prove our claim, that the image of (III.) is in fact the ideal sheaf of

the diagonal, we consider the third projective space Pz and the diagonal

mapPz → Py×Px . Since we restricted our attention to U×V, we consider
U ∩ V in Pz which is simply

Speck [ z
z i
, . . . ,

zn
z i
,
z
z j
, . . . ,

zn
z j

] = Speck [ z
z i
, . . . ,

zn
z i
,
z i
z j

] .

�e diagonal map thus corresponds to

k [x
x i
, . . . ,

xn
x i
,
y
y j
, . . . ,

yn
y j

]Ð→ k [ z
z i
, . . . ,

zn
z i
,
z i
z j

]

xk
x i
z→ zk

z i
yk
y j
z→ zk

z j
.

We now show that the kernel of the above surjective morphism is precisely

the ideal generated by the elements of the form (III.), hence proving

our claim. CallR the ideal generated by the elements of the form (III.).
SinceRmaps to zero (by inspection) the above morphism passes onto a
morphism φ from the quotient ring

Q =
k [ x

x i
, . . . ,

xn
x i
,
y
y j
, . . . ,

yn
y j
]

R .

For k ≠ i we have the identies
yk
y j

= y i
y j
xk
x i

holding inQ. In the case k = j this yields

 =
y j
y j

= y i
y j

x j
x i

(III.)

thus
y i
y j

= (
x j
x i

)
−
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inQ, and so

Q ≅ k [x
x i
, . . . ,

xn
x i
,
x i
x j

]

from which it follows that φ is an isomorphism. Hence our claim.

Taking the Koszul resolution associated with the morphism (III.) we

conlude. ³

Let’s write the resolution again. We have a canonical identification

k
⋀S =

k
⋀ (O(−) ⊠Ω()) ≃ O(−k) ⊠Ωk(k)

where the last isomorphism is a consequence of the following simple

algebraic lemma.

III.. L
Let R be a ring, let M and N be free R-modules of finite rank. Assume
moreoverM to have rank one.�en we have a natural isomorphism

r
⋀ (M ⊗N) ≃M⊗r ⊗

r
⋀N.

Proof
We define a map (as the k-linear extension of)

M
⊗r ⊗

r
⋀N ∋ (m ⊗⋯⊗mr)⊗ (n ∧⋯ ∧ nr)

z→ (m ⊗ n) ∧⋯ ∧ (mr ⊗ nr) ∈
r
⋀ (M ⊗N)

which is well-defined since M is of rank one. Clearly it is surjective and

therefore, being M and N free, an isomorphism. ³

As a result, if we writeL −k forO(−k) ⊠Ωk(k), the Koszul resolution
above becomes

 L −n L −n+ ⋯ L − L − L  O∆ 

so the complexL ⋅ is quasi-isomorphic to the -complex O∆ .�us the
two are isomorphic in the derived categoryDb(P ×P).

. - 

By writing ΦK we denote the Fourier-Mukai transform with kernel

K, going from the first factor to the second; by Φ′K we indicate the same
transform, but going in the opposite direction.

Let F ⋅ be a bounded complex of coherent sheaves on P. �e quasi-

isomorphismL ⋅ ≃ O∆ thus gives

F ⋅ ≃ ΦO∆ (F ⋅) ≃ ΦL ⋅(F ⋅)

and

F ⋅ ≃ Φ′O∆ (F
⋅) ≃ Φ′L ⋅(F ⋅)
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isomorphisms which of course occur in D. One may view them as a
decomposition of the identity, since L ⋅ is an honest complex of sheaves,
and not simply a sheaf (cf. T III..). So each sheaf F can be

decomposed in terms of theO(−r) ⊠Ωr(r)s (the cochains ofL ⋅).

Let us analyze each Fourier-Mukai transfrom ΦL −r . We have

ΦL −r(F ⋅) = Rq∗ (Lp∗F ⋅ ⊗L L −r)(III.)

(flatness of p) ≃ Rq∗ (p∗F ⋅ ⊗L (p∗O(−r)⊗ q∗Ωr(r)))
(locally freeness) ≃ Rq∗ (p∗F ⋅(−r)⊗ q∗Ωr(r))

(projection formula) ≃ Rq∗p∗F ⋅(−r)⊗Ωr(r)
(flat base change) ≃ RΓ (P,F ⋅(−r))⊗k O ⊗Ωr(r)

≃ H⋅ (P,F ⋅(−r))⊗k Ωr(r).

Similarly

Φ
′
L −r(F ⋅) ≃ H⋅ (P,F ⋅ ⊗Ωr(r))⊗k O(−r).(III.)

�ere is a striking similarity between (III.) and (III.) above and the

relationship between a basis of a vector space and its dual basis. Let’s

elaborate somemore on this last point. Given a basis of a finite dimensional

vector space

v , . . . , vd
we know that there is a dual basis

v∨ , . . . , v
∨
d

on the dual vector space, defined by the equations

v∨i (v j) = δ i j .

Any vector v can be expressed uniquely as a sum

v =
d
∑
j=

λ jv j

and it is straightforward to check that λ j is actually v∨j (v), in other words

v =
d
∑
j=
v∨j (v)v j .(III.)

�e Fourier-Mukai transforms above express a sort of duality between
the sheaves

O, . . . ,O(n)
and the sheaves

O, Ω(), . . . , Ωn(n).
One would hope to obtain identities similar to (III.) for coherent sheaves

on P, as:

F ‘≃ ’
n
⊕
j=
H
⋅(P,F (− j))⊗Ω j( j)[ j];

F ‘≃ ’
n
⊕
j=
H
⋅(P,F ⊗Ω j( j))⊗O(− j)[ j].
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Unfortunately the case is not so simple (but neither so dissimilar): sep-

arating the le� and right hand sides above lie two spectral sequences¹.

III.. T
Given a coherent sheafF on P there exist two spectral sequences:

E
r ,s
 = Hs(P,F (r))⊗Ω−r(−r) Ô⇒ { F if r + s = ;

 otherwise;

E
r ,s
 = Hs(P,F ⊗Ω−r(−r))⊗O(r) Ô⇒ { F if r + s = ;

 otherwise.

Proof (cf. [Huy, P .])
Both are a consequence of the spectral sequence

E
r ,s
 = Rs

F(Ar)Ô⇒ Rr+s
F(A⋅)

for any bounded complex A⋅. We only show the first case.

Let A⋅ be p∗(F )⊗L ⋅ and let F be q∗.�erefore, using (III.),

Rs
F(Ar) ≃ Hs(P,F (r))⊗Ω−r(−r).

Finally

Rr+s
F(A) = H r+s (ΦL ⋅(F ))

= H r+s (ΦO∆(F ))
≃ H r+s (F )

= { F if r + s = ;
 otherwise

which concludes the proof. ³

.  

III.. D
Let K be a k-linear triangulated category.

• An object E ∈ K is exceptional if

HomK(E, E[l]) = { k if l = ;
 otherwise.

• A sequence of objects

E , . . . , En

is exceptional if

HomK(E i , E j[l]) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k if l = , i = j;
 if l ≠ , i = j;
 if i > j.

Note that every E i is exceptional.

 We also remark that using Postnikov systems one may view the sheafF on the le� as an
iterated cone of the summands on the right.�e idea is precisely the one employed in the
proof of T III.., when splitting the Koszul resolution into short exact sequences.



  ’ 

• A sequence is full if it generates K (i.e. any full triangulated subcate-
gory containing the sequence is equivalent, via the inclusion, to K).

• A sequence is strong if

HomK(E i , E j[l]) = { k if l = , i = j;
 if l ≠ .

�e following theorem is of great importance and is fundamental for

the sections below.

III.. T
�e sheaves

O(−n),O(−n + ), . . . ,O

form a strong full exceptional sequence inDb
P.

Proof (cf. [Huy, C .])
Denote by E j the j-th term of the sequence {O(−n),O(−n + ), . . . ,O},
thus

E j = O( j − n − ).

Let’s start by showing that the sequence is strong and exceptional.

HomD(E i , E j[l]) = HomD (O(i − n − ),O( j − n − )[l])
= ExtlO (O(i − n − ),O( j − n − ))
≃ Rl

HomO (O(i − n − ),O( j − n − ))
≃ Rl

Γ (P,O( j − i))
≃ H l(P,O( j − i))

≃ {  if l ≠ ;
Sym

j−i
V∨ if l = 

which in particular shows that

HomD(E i , E j[l]) ≃ { k if l =  & i = j;
 if l =  & i > j

therefore the sequence is strong and exceptional. Let us now show that it

is indeed full. Let’s write the Koszul resolution of the diagonal again.

→L −n → ⋯→L − → OP×P → O∆ → 

We can split it up into short exact sequences

 L −n L −n+ M−n+ 

 M−n+ L −n+ M−n+ 

⋮

 M− OP×P O∆ 
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which can be regarded as distinguished triangles inD. Let nowF ⋅ ∈ D
be an element of the bounded derived category of CohP. We notice that
Rp∗ and -⊗Lq∗F ⋅, being exact functors, send distinguished triangles into

distinguished triangles. By applying -⊗Lq∗F ⋅ first and Rp∗ second we
obtain distinguished triangles

Φ′L −n(F ⋅) Φ′L −n+(F ⋅) Φ′M−n+
(F ⋅)

Φ′M−n+
(F ⋅) Φ′L −n+(F ⋅) Φ′M−n+

(F ⋅)

⋮

Φ′M−
(F ⋅) Φ′OP×P(F

⋅) Φ′O∆(F
⋅)

+

+

+

of which the r-th row is

Φ′M−n+r
(F ⋅)

Φ′M−n+r−
(F ⋅) H⋅ (P,F ⋅ ⊗Ωn−r(n − r))⊗k Er+

+

a fact that follows from (III.).

�erefore Φ′M−n+
(F ⋅) belongs to the triangulated category generated

by E and E, ⟨E , E⟩. By induction it follows that, for all r, Φ′M−n+r
(F ⋅)

belongs to ⟨E , . . . , Er+⟩. In conclusion

F ⋅ ≃ Φ′O∆(F
⋅) ∈ ⟨E , . . . , En+⟩ = ⟨O(−n), . . . ,O⟩ .

for all complexes of sheavesF ⋅ in the bounded derived categoryDb
P.³

III.. C
For all a ∈ Z, the sequence

O(a), . . . ,O(a + n)

is strong full and exceptional.

Proof
�e sequence is strongly exceptional. Fullness follows from noticing that

-⊗LO(a) is an exact auto-equivalence ofD, for any a ∈ Z. ³

.   

Following [Bĕı] we find thatDb
P(V) is equivalent to a simple homo-

topy category of modules over the symmetric algebra of V∨.

III.. L
Let C and D be two triangulated categories; let F ∶ C → D be an exact
functor. Let {X j} j be a family of objects generating C and assume {FX j} j
generates D. Assume moreover that F induces isomorphisms

HomC(X i , X j[l])→ HomD(FX i , FX j[l])

for all i , j and for all l ∈ Z.�en F is an exact equivalence.
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Proof
Consider C′ the full subcategory of C whose objects are the Y such that

HomC(X i[l], Y)
FÐ→ HomD(FX i[l], FY)

is an isomorphism. We notice that C′ is additive, closed under shi�s and
extensions therefore it is a full triangulated subcategory of C. Since C′ con-
tains {X j} it is equivalent via the inclusion to C. Let now D′ be the image

through F of C′; D′ is additive, closed under shi�s and extensions.�ere-

fore D′ is a full triangulated subcategory of D containing {FX j} hence
equivalent via the inclusion to D. Considering the following commutative
diagram of functors

C D

C′ D′

F

F

yields that F is an equivalence. Since it is a general fact that a quasi-inverse

to a ∆-functor is also a ∆-functor we have our claim (see [Mur, L

]). ³

Let S● be a graded k-algebra.Notation

S●(−r) is the usual twist by −r of Serre (i.e. S●(−r) is the free graded
S●-module with generator of degree r).

GrS●-Mod is the category of graded S●-modules with morphisms of de-
gree zero.

M[,n](S●) is the full additive subcategory of GrS●-Mod whose objects
are modules isomorphic to finite direct sums of the S●(−r)s, where
 ≤ r ≤ n.

Kb
[,n](S●) is the homotopic category of bounded complexes of

M[,n](S●).

Finally, we fix a k-vector space V of dimension n +  and writeM(Sym)
andM(⋀) forM[,n](Sym●

V∨) andM[,n](⋀● V) respectively; we write
K(Sym) andK(⋀) forKb

[,n](Sym●
V∨) andKb

[,n](⋀● V) respectively.
We now refine the first part of the proof of T III...

III.. L
We have isomorphisms

HomO(O(−i),O(− j)) = Symi− j(V∨)

where composition of sheaf homomorphisms corresponds to multiplication
in Sym●

V∨.

Proof
�is is a direct consequence of [Har, P II..]. ³
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Using the preceding lemma we can define an additive functor

F̃ ∶ M(Sym)→ CohP

such that F̃ (Sym●
V∨(−r)) = O(−r). Passing to the homotopic category

and composing on the le� with the quotient functor we obtain

F ∶ K(Sym)→ Db
P.

III.. T (B)
�e functor F defined above is an exact equivalence.

Proof
One only needs to check that F lies in the setting of L III.., which

is straightforward. ³

We also notice that there are ‘dual’ statements, involving the exterior

algebra (as opposed to the symmetric algebra which we’ve just employed).

We only state them.

III.. L
�ere are isomorphisms

HomO(Ω i(i), Ω j( j)) ≃
j−i

⋀V

where composition of sheaf homomorphisms corresponds to multiplication
in ⋀● V.

�erefore we may define the functors

F̃′ ∶ M(⋀)→ CohP

F
′ ∶ K(⋀)→ Db

P

such that F̃′(⋀● V(−r)) = Ωr(r). One also has the following lemma.

III.. L
For l >  the following holds.

Ext
l
O(Ω i(i), Ω j( j)) = .

As a consequence have the following result, analogous to (and with analo-

gous proof of) T III...

III.. T
�e sequence

O, Ω(), . . . , Ωn(n)

is strong full and exceptional.

In conclusion we obtain the following theorem.

III.. T (B)
�e functor F′ constructed above is an exact equivalence.



  ’ 

.   

We now relateDbCohP to another triangulated category. We skate over
some technical details and refer to [Cra, S ] for full proofs.

Recall that a ring R has finite global dimension if there is an integer d
such that any module admits a projective resolution of length less than d.

III.. D
Let X be projective over k and regular. Let

T =⊕
i

Ti

be a coherent sheaf on X. Consider the following properties.

T1 �e k-algebra R = EndX(T, T) has finite global dimension.

T2 �e modules ExtlX(T, T) vanish, for l > .

T3 �e sheaves Ti generateDbCohX.

We say that T is a partial tilting sheaf if it satisfies T1 and T2.�e sheaf T
is a tilting sheaf if it satisfies T1 through T3.

�e following are tilting sheaves on P.

T =
n
⊕
i=
OP(i + a), for a fixed a ∈ Z;

T
′ =

n
⊕
i=
Ω

i
P(i).

For the theorem that follows below we need a lemma.

III.. L
Let K be a triangulated category and letA be a collection of objects which
generates K. If E ∈ K is an object of K such that

Hom(A, E[k]) = , for all k ∈ Z;(III.)

for all A ∈ A , then E = .

Proof
Let K′ be the full subcategory consisting of all objects satisfying (III.).

Our assumptions imply that K′ ⊃ A , and K′ is obviously closed under

direct sums and translations. If A → B → C → TA is a d.t. with A, B ∈ K′

then, being Hom(-, E[k]) cohomological, we obtain an exact sequence

 = Hom(TA, E[k])→ Hom(C, E[k])→ Hom(B, E[k]) = 

and as a result Hom(C, E[k]) =  for all k ∈ Z.�us K′ is a triangulated

subcategory containingA , therefore it is equivalent to the whole K. As a
consequence E is isomorphic to an object of K′ and thus Hom(E, E) = ,
which implies that E = . ³

�e following result is due independently to Baer and Bondal ([Bae],

[Bon]).
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III.. T (B-B)
Let T be a tilting sheaf. �en the following functors are mutually quasi-
inverses of each other.

RHomX(T,−) ∶ DbCohP→ DbModf -R

− ⊗L
R T ∶ DbModf -R → DbCohP.

Hence the bounded derived category of coherent sheaves onP is equivalent
to the bounded derived category of right finitely generated R-modules.

Sketch of Proof
One starts with the functors

F = HomX(T, -) ∶ QcohX Ð→Mod-R,

G = -⊗R T ∶ Mod-R Ð→ QcohX.

Given a sheafF , F(F ) = HomX(T,F ) becomes a right R-module by
precomposition. For every open subset U ⊂ X of X, T(U) itself is a le� R-
module.�us, given a right R-module M, one can form the tensor product

M ⊗R T(U) of M and T(U) over R. We then define G(M) = M ⊗R T to
be the sheafification of the presheaf

U z→M ⊗R T(U).

One sees that F and G are respectively le� and right exact.

SinceQcohX has enough injectives we may derive F on the right, which
gives

RF ∶ DbCohX Ð→ D+Mod-R

when restricted to bounded complexes of coherent sheaves. Given a co-

herent sheafF , one shows that the cohomology modules

Rl
F(F ) = ExtlX(T,F )

vanish for big ∣l ∣ (and this is a consequence of the regularity of X and the
local-to-global spectral sequence for Ext) and are finitely generated. As a

consequence we can restrict the codomain of RF.

RF ∶ DbCohX Ð→ DbModf
-R.

On the other hand the categoryMod-R has enough projectives, therefore
G can be derived on the le�. One shows that if we start with a bounded

complex of finitely generated modules M⋅, the cohomology sheaves

H −l (M⋅ ⊗L
R T) = T orRl (M⋅

, T)

vanish for big ∣l ∣ (as a result of R having finite global dimension) and are
coherent. Hence we have a well-defined functor

LG ∶ DbModf
-R Ð→ DbCohX.

Since T satisfies T2 we have

RF ○ LG(R) = RF (R ⊗L
R T) = RHomX(T, T) = HomX(T, T) = R.



  ’ 

�is identity is the key ingredient. We want to show that LG fully faithful
and essentilly surjective, and thus an equivalence. Let’s assume for now

that the above identityRF ○LG(M⋅) =M⋅ is true for any M inDbModf
-R.

�e functor LG is then fully faithful.
Let E ⋅ be an element of Db(CohX) such that RF(E ⋅) = . �en, if

T ≅ S ⊕T ,

 = RF(E ⋅) = RHom(T,E ⋅) ≅ RHom(S ,E ⋅)⊕RHom(T ,E ⋅).

In particular, for any direct summand T of T, we have

 = Rk
Hom(T ,E ⋅) = HomD(X)(T ,E ⋅[k]),

and, since T satisfies T3 and applying L (III..), we conclude that
E ⋅ = .
Now, let T ⋅ be a bounded complex of coherent sheaves and let E⋅ be

one of its resolutions by locally frees. We have a map LG(RF(E⋅))→ E⋅
defined as follows: LG(RF(E⋅)) is the sheafification of the presheaf

U z→ Hom⋅(T, E⋅)⊗L
R T(U)

and by evaluation we define a morphism of presheaves which is then
carried over to a morphism ξ ∶ LG(RF(E⋅))→ E⋅. Taking cones, we have
a d.t.

LG(RF(E⋅)) ξÐ→ E⋅ Ð→ C
[]Ð→ .

Since RF is a ∆-functor we obtain another d.t.

RF(LG(RF(E⋅))) RF(ξ)Ð→ RF(E⋅)Ð→ RF(C ) []Ð→

where, sinceRF ○LG is the identity, the first object is justRF(E⋅) and one
can check that RF(ξ) is the identity, which is an isomorphism.�erefore,
by L I.., RF(C ) = , and thus C = . Again, by L I..,
ξ is an isomorphism, hence E⋅ lies in the essential image of LG, hence
proving that LG is essentially surjective.
�us it only remains to prove that the identity RF ○ LG(R) = R can be

extended to the whole ofDbModf
-R. It is obviously true that it holds for

any free module. If we prove that it furthermore holds for any projective

module of finite rank then, since R has finite global dimension, it will hold

for any bounded complex of finitely generated modules. We use the fact

(see [Cra]) that the projectives of R have a very simple form: they all

come from direct summands of T, under the functor F. If T ≃ T ⊕ T, we
call R i = Hom(T, Ti), which is a direct summand of R, and thus projective.
We want to show that LG(R j) = G(R j) = Tj . Using the evaluationmap
constructed above we get a sheaf homomorphism

R j ⊗R T Ð→ Tj ,

and we want to show that it is in fact an isomorphism. Consider the

endomorphisms  j of T, defined as being the identity on Tj and zero on
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the other direct summand.�is endomorphism acts on R i ⊗R T. Take an
element r i ⊗ (t i + t j):

r i ⊗ t j = r i ⊗  j ⋅ (t i + t j) = r i ⋅  j ⊗ (t i + t j) = δ i jr i ⊗ (t i + t j),

thus R i ⊗R T = Ti . Since any projective is of the form R j above, we have

RF ○ LG(R j) = RF(Tj) = R j . ³
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