
Math. Res. Lett. 18 (2011), no. 00, 10001–100NN © International Press 2011

Relative Singular Twisted Bondal–Orlov

John Calabrese

Abstract. A theorem of Bondal and Orlov states that a smooth projective variety with ample or
anti-ample canonical bundle can be reconstructed from its derived category. Here we extend the
original result in three directions: we allow Gorenstein singularities, we consider derived categories
of twisted sheaves and work relatively over a base stack.

1. Introduction

In a way, the starting point of the present work is a famous theorem of Gabriel [15],
which says that two varieties X, Y are isomorphic if and only if their categories of coherent
sheaves are equivalent, Coh(X) ≃ Coh(Y). This theorem has seen a number of generaliza-
tions [27, 25, 1, 11, 10] (see also [3, 20, 7, 8] for what happens when you take the tensor
structure into account).

When passing to derived categories, it is well known that the analogue of Gabriel’s
theorem is false: the most famous example probably being abelian varieties [22]. How-
ever, a foundational result of Bondal and Orlov says that at the very ends of the Kodaira
dimension spectrum a derived analogue of Gabriel’s theorem does indeed hold.

Theorem (Bondal–Orlov [9]) – Let X and Y be smooth projective varieties over a field k.
Assume the canonical bundle ωX is either ample or anti-ample. Then, X ≃ Y (over k) if
and only if DbCoh(X) ≃ DbCoh(Y), as graded k-linear categories. ∗

Here DbCoh(X) is the category of bounded coherent complexes. Since X is smooth,
DbCoh(X) coincides with Perf(X), the category of perfect complexes. We write D(X) for
the unbounded quasi-coherent derived category.

The theorem can be generalized to a relative setting while also incorporating some
singularities.

Theorem A (6.2) – Let S be a noetherian Artin stack with affine diagonal and let X,Y→ S
be flat, proper and relative algebraic spaces. Assume also that for all s ∈ S, the fibres Xs , Ys
are projective, connected and Gorenstein and that Xs has either ample or anti-ample
canonical bundle. Then X ≃ Y as S-stacks if and only if there exists an S-linear Fourier–
Mukai equivalence D(X) ≃ D(Y). ∗

More generally, we can work with twisted sheaves.

Theorem B (8.9) – With the same assumptions as above, let α,β be Brauer classes on X
and Y. Then, there exists an isomorphism f ∶X → Y of S-stacks, such that f ∗β = α, if and
only if D(X,α) ≃ D(Y,β). ∗

In [9], the authors also showed that the group of exact auto-equivalences of DbCoh(X) is
made up of the so-called standard equivalences.
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Theorem – Let X be a smooth, connected, projective variety over a field k, with either
ample or anti-ample canonical bundle. Then

Autk (D
bCoh(X)) ≃ Z × (Autk (X) ⋉ Pic(X))

where Z acts by shifts. ∗
Here we show a parallel result.

Theorem C (7.1, 8.11) – Let X → S be as in Theorem A and assume moreover S to be
connected. Then all S-linear Fourier–Mukai auto-equivalences of D(X) are standard:

AutS(D(X)) ≃ Z × (AutS(X) ⋉ Pic(X)).

A similar result holds for D(X,α). We have AutS(D(X,α)) ≅ Z × AutBGm
S (Xα), where Xα is

the total stack of the Gm-gerbe α, and AutBGm
S (Xα) denotes the group of BGm-equivariant

automorphisms. ∗

● A few remarks. Recall that an S-linear integral transform is a functor of the form
q∗(p∗(–)⊗K) for an object K ∈ D(X ×S Y) (called the kernel), where p and q are the projec-
tions from X ×S Y and all functors are implicitly derived. We say that an equivalence is
Fourier–Mukai if it is (isomorphic to) an integral transform. In this article we assume all
our equivalences are Fourier–Mukai transforms.

We do not feel especially guilty about this assumption. Indeed, a fundamental result
of Orlov says that for smooth projective varieties all derived equivalences are given by
integral transforms [23]. While this is not true in general (and there are many articles
devoted to studying these exotic functors, see for example [12] and references therein) this
becomes true if one works with enhancements [32, 4] (see also [13, 19]). By enhancement we
mean viewing derived categories as dg or ∞-categories.

In the theorems above we use the “big” category D(X) rather than Perf(X) or the bounded
coherent derived category DbCoh(X). Since we are not imposing any condition on our
base S (other than noetherianness and affineness of the diagonal) and given the possible
singularities of the fibres, the former seems a natural choice.

The category Perf(X) can be characterized as the subcategory of compact objects of D(X).
Thus, D(X) ≃ D(Y) implies Perf(X) ≃ Perf(Y). Conversely (working with enhancements),
D(X) is the Ind-completion of Perf(X). So Perf(X) ≃ Perf(Y) implies D(X) ≃ D(Y).

Finally, when S is a field, one can characterize DbCoh(X) as a sort of dual of Perf(X). In
particular, if Perf(X) ≃ Perf(Y) then DbCoh(X) ≃ DbCoh(Y). This point of view is explained
in [28, 2, 5]. However, when S is an arbitrary base, the situation appears to be quite subtle.
See [5] for results in this direction.

To remedy this, we will assume that our equivalences are defined by kernels which lie in
D-Coh(X ×S Y), the bounded above coherent derived category, and that their inverses also lie
in D-Coh(X×SY). The assumption on the inverse is likely to be automatic. See for example
[26, Corollary 1.2].

● Relation to earlier work. In [9], the case of smooth and projective varieties over a field
is treated, hence in this context Perf = DbCoh. The authors define the notions of point
and invertible objects of DbCoh(X). They then show that for X with ample or anti-ample
canonical bundle these correspond precisely to (shifts of) skyscrapers and line bundles.
Using the intrinsic nature of the Serre functor (which, up to a shift, is given by tensoring
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with the canonical) they are then able to reconstruct the canonical (or anti-canonical)
graded ring of X, which is enough to conclude. Once more, we mention that DbCoh(X) is
considered only with its graded structure and Fourier–Mukai transforms are not used. The
authors then describe the group of exact auto-equivalences of DbCoh(X), viewing the latter
as a triangulated category.

In [29, Theorem 4.19], Rouquier gave a different proof analyzing thick subcategories.
This proof is similar in spirit to Gabriel’s original approach to reconstructing a variety X
from the category Coh(X).

In [24] the theorem is proved using the existence of Fourier–Mukai transforms (see also
[16, Proposition 6.1, Exercise 6.2]).

In [2], the theorem is extended to Gorenstein singularities. The proof is based on a
characterization of DbCoh(X) as a particular category of functors Perf(X) → Vectk due to
Rouquier [28, Proposition 6.12]. As an application, Ballard deduces the Gorenstein version
of the Bondal–Orlov theorem and a description of all exact auto-equivalences.

In [21], the case of twisted sheaves on a smooth projective variety was considered. The
proof parallels [16, Proposition 6.1].

In [31], the authors consider a relative setup. In order to deal with singularities, they
introduce a variant of the notion of point object. They use so-called Gorenstein cycles,
which are appropriately thickened versions of skyscraper sheaves. They assume that S is
both a scheme and Cohen-Macaulay. On the other hand, they do not need their spaces to
be flat over S, but only Tor-finite.

The present article provides a moduli theoretic proof of the Bondal–Orlov theorem.
Given D(X), we construct a moduli space BOX parameterizing what we call Bondal–Orlov
points, which are the natural relative version of the point objects of [9]. We mention in
passing that we never use the notion of invertible object introduced in [9]. Using the
machinery developed in [11], we are then able to compare BOX with the functor of points
of X. With additional work, the theorems follow.
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2. Conventions

A point z of a stack Z will mean any morphism z∶Spec k → Z, where k is a field. We
write z ∈ Z. This is slightly non-standard, for example in [17] a point means an element of
the underlying topological space |Z|.

In the sequel we will fix a base Artin stack S, which will be assumed to be noetherian
and with affine diagonal. We will want to define prestacks over S, which for us means
considering (weak) functors

F∶Affopft /S→ Grpd.

The subscript ft stands for “finite type”. Concretely, F assigns a groupoid to any finite type
morphism SpecR → S. This is justified by the fact that we are only interested in stacks
locally of finite type over S, whose functor of points on the whole Affop/S are determined
by restricting to Affopft /S. In particular, since S is noetherian, all the rings we consider will
be noetherian.

We say that a morphism F → G is fully faithful on objects if, for all SpecR → S, the
functor F(R)→ F(R) is fully faithful.

We say that X → S is a relative (insert whatever) if for any SpecR → S the fibre product
XR = X ×S SpecR is an (insert whatever).

We will use the following notation. We write Coh(X), QCoh(X) for the abelian categories
of coherent and quasi-coherent sheaves on X. By D(X) we mean the unbounded derived
category of quasi-coherent sheaves. We have inclusions

Perf(X) ⊂ DbCoh(X) ⊂ D-Coh(X) ⊂ D(X)

where the first is the category of perfect complexes, the second is the bounded coherent
derived category and the third is the category of bounded above and coherent complexes. As
all our X are noetherian, a bounded (resp. bounded above) complex E ∈ D(X) lies in DbCoh
(resp. D-Coh) if and only if Hi (E) ∈ Coh(X) for all i ∈ Z.

Let X,Y be stacks over a base S. By S-linear Fourier–Mukai equivalence we mean a
functor D(X) → D(Y) represented by a kernel K ∈ D-Coh(X ×S Y) whose inverse is also
represented by a kernel in D-Coh(X ×S Y). By AutS(D(X)) we mean the group of S-linear
Fourier–Mukai equivalences.

Following Section 4, all functors are implicitly derived.

3. Points in abelian categories

Here we mimic the approach taken in [11]. The idea being that a variety X can be
realized as a moduli of point-like objects of QCoh(X).

Situation 3.1

Let S be a noetherian Artin stack with affine diagonal. Let π∶X→ S be a relative algebraic
space. Assume π is proper. ∗

For any affine SpecR → S we write XR for the base change X ×S SpecR. For a quasi-
coherent sheaf M ∈ QCoh(X) we write M ⊗S R (or M ⊗ R if no confusion is likely to arise)
for the pullback along the projection XR → X. We draw the following diagram for later
reference.
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XR = X ×S SpecR X

SpecR S

πR

In [11] there is a notion of point-like objects of the category QCoh(X). Since here our base
S is noetherian and X is proper over it, we may give a simplified version of [11, Definition
2.1] (in loc. cit., see also Remark 2.3 and the comment just before Section 2.2). We will
show that it leads to the same moduli problem below.

Definition 3.2 – Assume to be working in Situation 3.1. For any SpecR→ S of finite type,
let XR be the base change. A P ∈ QCoh(XR) is lazily point-like if the following hold.

(1) P is finitely generated.
(2) P is R-flat.
(3) The natural morphism R→ Hom(P, P) is an isomorphism.
(4) If R is a field then P has no non-trivial quotients.

Such P is moreover universally lazily point-like if for any R→ R′ the base change P⊗RR
′ ∈

QCoh(XR′ ) is lazily point-like. ∗
One then defines PtX as the moduli functor parameterizing universally lazily point-like

sheaves.

Remark 3.3. Notice that, if P ∈ PtX(R) and L is a line bundle on SpecR, then P ⊗ π∗RL is
still an object of PtX(R). Said in a more compact way, BGm acts on PtX. *

In parallel with [11, Theorem 3.2], let us show that PtX is isomorphic to X×BGm, where
the isomorphism is compatible with the action of BGm on both sides. Notice that, for
any SpecR → S, the groupoid X × BGm(R) consists of pairs (f , L) where f ∶SpecR → X
is a morphism (over S) and L is a line bundle on R. There is an obvious morphism
X×BGm → PtX which on R-points sends a pair (f , L) to OΓf ⊗π

∗

RL, where Γf ⊂ X×SpecR
is the graph of f .

Proposition 3.4 – Assume to be working in Situation 3.1. The map X × BGm → PtX is an
isomorphism of S-stacks. ∗

Proof. The proof boils down to the following claim: given SpecR → S and a lazily point-
like sheaf P ∈ QCoh(X×S SpecR) there exists a unique morphism f ∶SpecR→ X (over S) and
a unique line bundle L on SpecR such that P⊗ L–1 is isomorphic to OΓf .

In what follows we go through the proof in [11] for point-like sheaves and explain where
the extra axioms are not needed.

Consider the scheme-theoretic support Z of P.

Z = suppP ⊂ X × SpecR.

Write ρ∶Z → SpecR for the projection. We wish to show two things: πR∗P is a line
bundle; ρ is an isomorphism. The morphism f will then be given by the composition
SpecR→ Z→ X ×S SpecR→ X; the line bundle L will be given by (π∗RπR∗P)

∨.

If R is a field, we may apply axiom (4), so that [11, Lemma 2.7] tells us ρ is an isomor-
phism. For general R, the fact that P is universally lazily point-like implies ρ is a universal
bijection with affine fibres.
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Next, we want to show ρ is affine. By [30, Theorem 8.5] it suffices to show ρ is universally
closed. In [11] we did not have any notherian assumption and needed [11, Definition 2.1
axiom (5)]. Here, however, this is automatic thanks to properness of π. Hence, ρ is affine.

Let us now show L := πR,∗P is a line bundle. In [11, p. 10], this required [11, Definition
2.1 axiom (3)] as we needed to know L was finitely presented. But this is a consequence of
properness of π, and we may proceed as in [11, p. 9] to show that L is a line bundle.

To conclude, we only need axiom (3) of being lazily point-like (which is [11, Definition
2.1 axiom (4)] in the case M = R). We proceed as in [11, p. 10] and conclude. ∎

Remark 3.5. As is transparent from the proof, PtX is isomorphic to X × BGm compatibly
with action of tensoring with line bundles coming from the base. In other words, this is an
isomorphism of Gm-gerbes. Informally, we say it is BGm-equivariant. *

Remark 3.6. In place of PtX, we could consider the Set-valued functor, where we identify
objects E1, E2 ∈ PtX(R) if there exists a line bundle L on R and an isomorphism E1 ≃ E2⊗L.
This is the Gm-rigidification of PtX and we denote it by PtX /BGm. The latter is isomorphic
to X itself. Nevertheless, keeping track of automorphisms is crucial later when dealing with
twisted sheaves. *

4. Base change

Before moving on, we must deal with a few technical facts. What follows is standard.

Notation. Henceforth, all functors will be implicitly derived.
The first lemma we need is a generalization of the well-known [16, Lemma 3.31].

Lemma 4.1 – Let S be a noetherian and connected scheme. Let X be a noetherian Artin
stack and f ∶X→ S be a flat map.

Let E be a bounded above complex with coherent cohomology. For any point s ∈ S,
denote by is ∶Xs → X the inclusion of the fibre. Assume that for all s ∈ S the derived
restriction i∗s E is concentrated in a single degree. Then E is a (possibly shifted) sheaf flat
over S. ∗

Proof. Assume first S is the spectrum of a local ring with closed point s ∈ S. Let U → X
be a faithfully flat map with U affine. Notice that the claim holds (namely that E is
concentrated in a single degree and flat) if and only if it holds for the pullback of E to
U. Hence we may assume directly that X itself is affine. Moreover, the claim holds if it
holds for the restriction of E to each of the local rings of X. Hence we may assume X to
be the spectrum of a local noetherian ring and the morphism X → S to be local. Let us
momentarily write i for the inclusion is of the fibre over s.

If E = 0 there is nothing to prove. If E ≠ 0 then by assumption there exists m such
that Hm(E) ≠ 0 and Hm+j (E) = 0 for all j > 0. Up to shifts, we may assume that i∗E is
concentrated in degree zero. Consider the spectral sequence

Ep,q2 = Hp(i∗Hq (E))⇒ Hp+q i∗(E).

Notice that the differentials involving the H0(i∗Hm(E)) term are both zero. If m > 0 or m < 0
then H0(i∗Hm(E)) = Hm(i∗E) = 0 hence Hm(E) = 0, which we assumed wasn’t true. Thus
m = 0.
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Now, the differentials involving the H–1(i∗H0(E)) term are both zero. Thus, H–1(i∗H0(E))
is an associated graded piece of the filtration on H–1(i∗E) = 0. Since (by assumption) the
latter is zero, the former must also vanish. By the local criterion for flatness [14, TAG
00MK], we have that H0(E) is flat over S (here we use that E has coherent cohomology).

Let’s move up to the case where S is an irreducible scheme. By assumption, for each
s ∈ S, there exists an integer ms such that i∗s E is concentrated in the single degree ms .

If s is any point of S, write X′s = SpecOS,s ×S X. If η is the generic point of S, then we
have a morphism of local rings OS,s → OS,η inducing a morphism X′η → X′s . Since i∗ηE
factors through restriction to X′s , we have ms = mη . Hence E is globally concentrated in
degree mη and flat over S (as per the local discussion above).

Assume now S is a connected scheme. By the noetherian assumption, it has finitely
many irreducible components. By the argument above, ms is constant on irreducible
components. By connectedness, we have that ms is constant. ∎

For our second lemma, we change context. Let now X be a projective, connected,
Gorenstein scheme. The category Perf(X) has a Serre functor Σ = ΣX, given by – ⊗
ωX[dimX]. Moreover, Σ extends to an auto-equivalence of the whole category D(X).

The converse is also true: if Perf(X) has a Serre functor then X is Gorenstein [2, Lemma
6.6]. By a standard argument, we have the following (cfr. [16, Lemma 1.30]).

Lemma 4.2 – Let X and Y be projective, connected Gorenstein schemes over k and let Φ
be an equivalence between D(X) and D(Y). Assume X is Gorenstein. Then, Y is Gorenstein
and there is an isomorphism ΣYΦ ≃ ΦΣX. ∗

For the rest of this section we will work in the following setup.

Situation 4.3

Let S be a noetherian base Artin stack with affine diagonal. Let X,Y→ S be flat and proper
relative algebraic spaces with affine diagonal. Let K ∈ D-Coh(X×SY) and let ΦK∶D(X)→ D(Y)
be the associated integral transform. Assume ΦK is an equivalence. Assume moreover that
there exist a kernel H ∈ D-Coh(X ×S Y), defining the integral transform ΨH∶D(Y) → D(X),
and an isomorphism ΨH ≃ Φ–1

K . ∗

The following is another standard fact.

Lemma 4.4 – Assume to be working in Situation 4.3. Let T → S with T a scheme.
Let KT, HT ∈ D-Coh(XT ×T YT) be the base changes of the respective kernels. Then the
corresponding integral transforms ΦKT ,ΨHT are equivalences and Φ–1

KT
= ΨKT . ∗

Lemma 4.5 – Assume to be working in Situation 4.3. Moreover, assume S = SpecR to
be affine. Then, E ∈ D(X) is bounded above (below) if and only if ΦK(E) is bounded above
(below). ∗

Proof. This is [5, Lemma 3.0.14] (notice they use connective to mean concentrated in
cohomological degrees ≤ 0). ∎

Lemma 4.6 – Assume to be working in Situation 4.3. Moreover, assume S to be affine.
Let E ∈ D(X) be bounded above. Then, E ∈ D(X) has coherent cohomology if and only if
ΦK(E) has coherent cohomology. ∗
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Proof. This boils down to the fact that for proper f , f∗ preserves D-Coh. ∎
Combining the previous lemmas we obtain the final result of this section.

Proposition 4.7 – Assume to be working in Situation 4.3. Let T = SpecR→ S. Then ΦKT

restricts to an equivalence DbCoh(XT) ≃ DbCoh(YT). ∗

5. Points in derived categories

Now we study our moduli of Bondal–Orlov points.

Situation 5.1

Assume Situation 4.3. Moreover, assume that for all s ∈ S the fibres Xs , Ys are connected and
Gorenstein. ∗

By the discussion from the previous section, if Xs is Gorenstein so is Ys .

Definition 5.2 – Assume to be working in Situation 5.1. Let SpecR → S be of finite type.
We say that P ∈ D(XR) is a Bondal–Orlov point if the following hold.

(1) P ∈ DbCoh(XR).
(2) The natural map R→ Hom(P, P) is an isomorphism.
(3) For all i < 0, Hom(P, P[i]) = 0.
(4) If R is a field, there exists m ∈ Z and an isomorphism ΣP ≃ P[m].

Finally, we say that such a P is moreover a universal Bondal–Orlov point if for any R→ R′,
P⊗R R′ is a Bondal–Orlov point. ∗

We can define a prestack

BOX∶Aff
op
ft /S→ Grpd

sending a map SpecR→ S to the groupoid of universal Bondal–Orlov points over R.

Remark 5.3. We can parallel Remark 3.5 for BOX. Indeed, BOX comes with an action given
by tensoring with line bundles on the base. Moreover, the constant sheaf (over S) Z also
acts on BOX by shifts. We will be interested in the quotient BOX /Z. Assume SpecR → S
with SpecR connected. Concretely, objects of BOX /Z(R) are given by identifying E1, E2 ∈
BOX(R) if E1 ≃ E2[r ] for some r . Morphisms are given by isomorphisms between E1 and
E2[r ]. Notice that, if E1 ≃ E2[r ], there are no morphisms in BOX(R) between E1 and E2[i],
for i ≠ r . This is because a bounded complex cannot be isomorphic to a shift of itself.

We can take this a step further and rigidify BOX /Z to obtain BOX /Z/BGm. Concretely,
we identify complexes E1, E2 ∈ BOX(R), if there exists an integer r and a line bundle L on
SpecR, such that E1 ≃ E2 ⊗ L[r ].

To deal with non-connected SpecR, we must allow Z to act by separate shifts on each
connected component of SpecR. *

Proposition 5.4 – Assume to be working in Situation 5.1. Then ΦK induces an isomor-
phism BOX ≃ BOY of S-stacks. This isomorphism is equivariant with respect to (Z×BGm),
hence induces an isomorphism BOX /Z ≃ BOY /Z and BOX /Z/BGm ≃ BOY /Z/BGm. ∗
Proof. It suffices to show that, for any SpecR → S of finite type and any E ∈ BOX(R),
ΦKR (E) ∈ BOY(R).

Let us check that ΦKR (E) satisfies all axioms of being a Bondal–Orlov point. (1) is true
by Lemma 4.7. (2) is true as ΦKR preserves the R-module structure on Hom spaces. (3) is
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true as ΦKR is an equivalence. (4) is true as ΦKR commutes with Serre functors, by Lemma
4.2.

The compatibility with BGm × Z follows as Φ is exact and linear over S. ∎

Finally, we begin to compare PtX with BOX. The following lemma will be crucial below.

Lemma 5.5 – Assume to be working in Situation 5.1. There is an obvious map PtX → BOX,
which is: fully faithful on objects, formally smooth and equivariant with respect to the
BGm-action on either side. The same holds for the composition PtX → BOX /Z. Finally,
the induced map X→ BOX /Z/BGm is a formally smooth monomorphism. ∗

Proof. Let SpecR→ S be of finite type. We can check directly that P ∈ PtX(R) satisfies the
axioms of being a Bondal–Orlov point.

● (1) follows from (1) of being lazily point-like.
● (2) follows from (3) of being lazily point-like.
● (3) follows as P is a sheaf.
● (4) follows from the fact that, over a field, the Serre functor is given by tensoring
with a line bundle and point-like sheaves are skyscrapers.

Clearly everything is compatible with base change, hence we have a well defined morphism
PtX → BOX. Since two sheaves are isomorphic if and only if they are quasi-isomorphic
as complexes, PtX → BOX is fully faithful on objects. Equivariance with respect to BGm
is also automatic: for E ∈ PtX(R), the derived tensor product E ⊗ L coincides with the
underived one (since we are assuming L locally free). Let us show PtX → BOX is formally
smooth.

We need to show that any lifting problem

SpecR0 PtX

SpecR BOX

E

G

with R → R0 a nil-thickening of Artin rings, has a solution SpecR → PtX. Concretely,
G ⊗ R0 ≃ E. In particular, the fibre of G is a sheaf and hence by Lemma 4.1, G itself is a
sheaf flat over R. By inspection, the axioms of being lazily point-like are satisfied. Hence
G ∈ PtX(R) is itself the solution to the lifting problem.

The rest of the theorem follows. ∎

6. Bondal–Orlov

We now combine the previous sections to prove our main result.

Situation 6.1

Assume to be working in Situation 5.1. Moreover, for all s ∈ S, assume the canonical bundle
of the fibre ωXs to be either ample or anti-ample. ∗

Here is our main result.

Theorem 6.2 – Assume to be working in Situation 6.1. Then X ≃ Y over S. ∗
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We argue as follows. We will show that (given the assumptions on the canonical) the
morphism PtX → BOX → BOX /Z is an isomorphism. Then we inspect the map PtY →
BOY /Z ≃ BOX /Z ≃ PtX and prove the induced map Y→ X is in fact an isomorphism.

Proposition 6.3 – Assume to be working in Situation 6.1. Let SpecR→ S be of finite type,
with SpecR connected. If E ∈ BOX(R) is a universal Bondal–Orlov point, there exists r ∈ Z,
such that Hi (E) = 0 for all i ≠ r and Hr (E) ∈ PtX(R) is universally lazily point-like. ∗

Proof. What follows is essentially half of the original argument of Bondal–Orlov. Let
SpecR → S and let P be a (universal) Bondal–Orlov point over R. Let now s∶Spec k →
SpecR be any point. Write ω for the canonical bundle of Xs . Since the fibre s∗P is also a
Bondal–Orlov point, axiom (4) implies s∗P⊗ω[d ] = s∗P[n] for some integer n (here d is the
dimension of Xs ). By exactness, Hi (s∗P)⊗ ω ≃ Hi (s∗P)[n – d ] which means n = d .

Suppose we are in the case where ω is ample (the anti-ample case is treated by con-
sidering the inverse of the Serre functor). Since Hi (s∗P)⊗ ωj ≃ Hi (s∗P) (and using axioms
(2) and (3)), we can appeal to [16, Lemma 4.5] to conclude s∗P is concentrated in a single
degree.

By the Lemma 4.1, P = Q[r ] for some r , where Q is a sheaf flat over R. By inspection, Q
satisfies the axioms of being a lazily point-like object. ∎

Proposition 6.4 – Assume to be working in Situation 6.1. Then the composition PtX →
BOX → BOX /Z is a BGm-equivariant isomorphism. It induces an isomorphism X →
BOX /Z/BGm. ∗

Proof. It suffices to prove that for any SpecR → S we have an equivalence of groupoids
PtX(R) → BOX /Z(R), for all SpecR → S. Lemma 5.5 shows fully faithfulness. Essential
surjectivity follows from Proposition 6.3, once we observe that the sheaf Z acts by different
shifts on connected components of SpecR (see Remark 5.3). Once again, since for a sheaf
E and a locally free sheaf L the derived tensor product E⊗L coincides with the underived
one, the rest follows. ∎

We are ready to prove our main result.

Proof (of Theorem 6.2). Consider now the map

PtY → BOY → BOY /Z ≃ BOX /Z ≃ PtX .

Since it is equivariant, it descends to a map f ∶Y = PtY /BGm → PtX /BGm = X over S. Let
T→ S be faithfully flat, with T affine. It suffices to show that the base change fT∶YT → XT
is an isomorphism of T-schemes.

By properness of X and Y, we have that fT is proper. Moreover, by Lemma 5.5, fT is
a monomorphism hence it is a closed immersion. Also using Lemma 5.5, we have that fT
is formally smooth. Hence, fT is both a closed and an open immersion. To conclude, it
suffices to show that it is surjective.

Let x ∈ XT be any point. Let t ∈ T be its image in T. Consider the map on fibres
Yt → Xt . The exact same argument as above shows it is an open and closed immersion.
Since (by assumption) Yt and Xt are connected, it is an isomorphism.

Hence, there exists y ∈ Yt mapping to x. In other words, YT → XT it surjective and thus
an isomorphism. ∎
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7. Auto-equivalences

The goal of this section is to explain and prove the following.

Theorem 7.1 – Let S be a connected, noetherian Artin stack with affine diagonal. Let
X → S be a flat and proper relative algebraic space. Assume that for all s ∈ S, the fibre Xs
is Gorenstein, connected and with either ample or anti-ample canonical bundle.

Then the natural map Z × (AutS(X) ⋉ Pic(X))→ AutS(D(X)) is an isomorphism. ∗
The group of auto-equivalences of the derived category always contains the standard

equivalences: shifts, tensoring with line bundles, automorphisms. More precisely, there is
a group homomorphism

Z × (AutS(X) ⋉ Pic(X))→ AutS(D(X)).

An S-linear auto-equivalence of D(X) induces, essentially by definition, an automor-
phism of BOX over S. Moreover, this automorphism is of a special kind, as it commutes
with the action of Z (shifts) and the action of BGm (tensoring with pullbacks of line bundles
on the base). We write AutZ×BGm

S (BOX) for the subgroup of automorphisms commuting
with shifts and tensoring with line bundles coming from the base. Given the assump-
tions on the fibres of X, Proposition 6.4 applies. It is then straightforward to see that
AutZ×BGm

S (BOX) ≃ Z × AutBGm
S (PtX). Since PtX ≃ X × BGm, this automorphism group is

isomorphic to Z × (AutS(X) ⋉ Pic(X)). Thus, we have a right split short exact sequence

1→ Q→ AutS(D(X))→ Z × (AutS(X) ⋉ Pic(X))→ 1

and the proof of Theorem 7.1 reduces to showing that Q is trivial.

Proof (of Theorem 7.1). Let K be a kernel representing an auto-equivalence in Q. Let us
call this equivalence Φ. We will show that K ≃ O∆. Indeed, OX ⊠ K defines an auto-
equivalence of D(X × X). By inspection, the image O∆ under this equivalence is precisely
K. However, O∆ is a family of Bondal–Orlov points over X. Since Φ acts as the identity
on BOX, it must send O∆ to itself. Hence, K ≃ O∆. ∎

8. Twisted sheaves

We now generalize all the above to the case of twisted sheaves.

8.1. Abelian points. Let us start with Section 3. Let S be a noetherian Artin stack with
affine diagonal and let X → S be a proper relative algebraic space. Moreover, fix a Gm-
gerbe α on X. We have the category QCoh(X,α) of α-twisted sheaves. As in Section
3, we have two moduli spaces of (universally) point-like and lazily point-like α-twisted
sheaves. Just as in Section 3, both have an action of BGm and are isomorphic S-stacks
(with isomorphism compatible with the BGm-action). Henceforth, we will write Ptα for
the moduli space of lazily point-like α-twisted sheaves. By [11], we know Ptα is isomorphic
(equivariantly, i.e. as Gm-gerbes) to α.

8.2. Base change. Assume α is a Gm-gerbe on a space X. If there exists a finitely
generated locally free α–1-twisted sheaf F then the functor (–)⊗ F sends α-twisted sheaves
to ordinary sheaves. This standard trick (which we learned from [21]) is often useful for
bootstrapping theorems.

Note that a Gm-gerbe admits a locally free twisted sheaf if and only if the gerbe is
representable by an Azumaya algebra [18, Proposition 3.1.2.1].
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In general it is not possible to represent every Gm-gerbe by an Azumaya algebra.
However, as shown by Toën in [33], as long as X is assumed to be quasi-compact and
quasi-separated, every Gm-gerbe can be represented by a derived Azumaya algebra. That
is, we know that there exists an α–1-twisted perfect complex F. And we may consider M⊗F
to obtain an ordinary perfect complex.

Lemma 8.1 – Let X be a quasi-projective scheme over a field and let α be a Gm-gerbe over
X. Let L be an ample (or anti-ample) line bundle. If M ∈ DbCoh(X,α) satisfies M⊗ L ≃ M,
then M has zero-dimensional support. ∗

Proof. Let F ∈ Perf(X,α–1) be a compact generator of the category Perf(X,α–1) (as guar-
anteed to exist by [33, Corollary 3.8]). We denote by M′ = M⊗F ∈ DbCoh(X). By assumption
we have M′ ⊗ L ≃M′. Since L is ample or anti-ample, we see that the Hilbert series of M′

is constant, therefore M′ has zero-dimensional support. Since F is a generator, we must
have suppM′ = suppM. ∎
Lemma 8.2 – Let X be a connected projective scheme over a field and α a Gm-gerbe.
The category Perf(X,α) has a Serre functor if and only if X is Gorenstein. ∗
Proof. If X is Gorenstein, then (–) ⊗ ωX[dimX] is a Serre functor; a proof can be found
for example in [6, Lemma 1.8.1 (b,c)], where DbCoh must be replaced with Perf for the
argument to apply to the Gorenstein case. Conversely, we can proceed as in [2]. Given
a compactly generated k-linear triangulated category T, Ballard introduces the notion of
Rouquier functor R. He then proves [2, Lemma 5.13] that if Tc (the subcategory of compact
objects) admits a weak Serre functor S then S must be isomorphic to R. On the other hand,
[2, Example 5.12] shows that the Rouquier functor of Perf(X) must be given by (–)⊗ f !Ok .
The proof found there applies verbatim to the case of twisted sheaves. In particular, we
see that f !Ok must be perfect and [2, Lemma 6.6] tells us X is in fact Gorenstein. ∎

We also have an analogue of Lemma 4.1.

Lemma 8.3 – Let S be an affine, noetherian and connected scheme and let X → S be flat
and projective. Let α be a Gm-gerbe on X. Let E ∈ D-Coh(X,α). Assume that, for all s ∈ S,
the (derived) restriction Es ∈ D-Coh(Xs ,αs ) is concentrated in a single degree. Then, there
exists r ∈ Z, such that E = E′[r ] for E′ ∈ Coh(X,α) and E′ flat over S. ∗
Proof. Let g ∶X′ → X be an étale surjective morphism such that g∗α = 0. It follows that
E satisfies the claim if and only if g∗E is the shift of a coherent sheaf flat over S. But the
latter is true by Lemma 4.1. ∎

The rest of Section 4 also goes through for twisted sheaves.

8.3. Derived points. Let us fix the setup for the rest of this paper.

Situation 8.4

Let S be a noetherian Artin stack with affine diagonal. Let X,Y → S be flat and proper
relative algebraic spaces. Let α be a Gm-gerbe on X, and β a Gm-gerbe on Y. Let K ∈
D-Coh(X×SY,α–1⊠β) and let ΦK∶D(X)→ D(Y) be the associated integral transform. Assume
ΦK is an equivalence. Assume moreover that there exist a kernel H ∈ D-Coh(Y×S X,β–1 ⊠α),
defining the integral transform ΨH∶D(Y)→ D(X), and an isomorphism ΨH ≃ Φ–1

K .
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For all s ∈ S, assume the fibres Xs , Ys to be projective and connected. Finally, assume the
fibre Xs to be Gorenstein with ample (or anti-ample) canonical bundle. ∗

The definition of Bondal–Orlov point in the twisted case requires no additional effort.

Definition 8.5 – Assume to be working in Situation 8.4. Let SpecR→ S be of finite type.
We say P ∈ D(XR,αR) is an α-twisted Bondal–Orlov point if the following hold.

(1) P ∈ DbCoh(XR,αR).
(2) The natural map R→ Hom(P, P) is an isomorphism.
(3) For all i < 0, Hom(P, P[i]) = 0.
(4) If R is a field, there exists m ∈ Z and an isomorphism ΣP ≃ P[m].

We say such P is universally Bondal–Orlov if, for all R → R′, the base change PR′ is also a
Bondal–Orlov point. ∗

We write BOα for the moduli of universal α-twisted Bondal–Orlov points. Just as in
the untwisted case, BOα comes with an action of both Z and BGm. Clearly, the integral
transform ΦK induces an isomorphism of S-stacks BOα ≃ BOβ , compatible with the ac-
tion Z and BGm. Hence it descends to isomorphisms of S-stacks BOα /Z ≃ BOβ /Z and
BOα /Z/BGm ≃ BOβ /Z/BGm.

We have a twisted version of Lemma 5.5.

Lemma 8.6 – Assume to be working in Situation 8.4. There is an obvious map Ptα → BOα

which is: fully faithful on objects, formally smooth and BGm-equivariant. Same holds for
the composition Ptα → BOα → BOα /Z. Finally, the induced morphism Ptα /BGm →
BOα /Z/BGm is a formally smooth monomorphism.

Ditto for β. ∗

8.4. Bondal–Orlov. It will be no surprise that, because of the assumption on the canoni-
cal, we will show that BOα /Z ≃ Ptα where, using [11], the latter is the Gm-gerbe α itself. It
also follows that BOα /Z/BGm is naturally isomorphic to X.

Proposition 8.7 – Assume to be working in Situation 8.4. Let SpecR→ S be of finite type
with SpecR connected. Let E ∈ BOα(R). Then there exists (unique) r and P ∈ Ptα(R) such
that E ≃ P[r ]. ∗

Proof. This is the twisted version of Proposition 6.3. The argument is the same, as we
can rely on Lemma 8.3 and Lemma 8.1. ∎

Proposition 8.8 – Assume to be working in Situation 8.4. The composition Ptα → BOα →
BOα /Z is an isomorphism of S-stacks, compatible with the action of BGm. Moreover, we
have isomorphisms X ≃ Ptα /BGm ≃ BOα /Z/BGm. ∗

Proof. Just as in Proposition 6.4, the first result follows by considering the action of
the constant sheaf Z. The second follows as, using [11], we know Ptα is the Gm-gerbe
representing α. ∎

Theorem 8.9 – Assume to be working in Situation 8.4. Then there exists an isomorphism
f ∶Y→ X of S-stacks, such that f ∗α = β. ∗

Proof. We argue as in Section 6 and show that the composition Ptβ → BOβ /Z→ BOα /Z ≃
Ptα is an isomorphism. By BGm-equivariance, this induces a map Y → X. We wish to
show it is an isomorphism. Let T→ S be faithfully flat, with T affine. It suffices to show the
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base change YT → XT is an isomorphism. But this follows just as in the proof of Theorem
6.2, using Lemma 8.6.

The fact that Ptβ → Ptα is an isomorphism now follows by BGm-equivariance and the
Lemma below. ∎

Lemma 8.10 – Assume to be working in Situation 8.4. Let Z,W → Y be Gm-gerbes and
let Z→W be a BGm-equivariant morphism. Then Z→W is an isomorphism. ∗

Proof. Indeed, the statement boils down to (an appropriate categorification of) the follow-
ing trivial fact: if G is a group, any G-equivariant function G → G must be a bijection.
Rigorously, let T → S be fully faithful, with T affine. It suffices to show the base change
ZT →WT is an isomorphism. Let U → YT be a cover, trivializing both ZT and WT. Once
again, it suffices to show that the base changes of ZT and WT over U are isomorphic. In
other words, we have reduced the question to the following.

Let U be affine and let U × BGm → U × BGm be a BGm-equivariant map. Then
U × BGm → U × BGm is an isomorphism of U-stacks. ∎

8.5. Autoequivalences. We conclude with a description of the group of autoequivalences
of the derived category of twisted sheaves.

Theorem 8.11 – Assume to be working in Situation 8.4 and assume S to be connected.
Let X → X be the Gm-gerbe representing α and let AutBGm (X) be the group of BGm-
equivariant automorphisms of X. Then AutS(D(X,α)) ≃ Z ×AutBGm (X). ∗

Proof. We may parallel Section 7. By looking at the effect on points, there is a group
homomorphism AutS(D(X))→ AutZ×BGm (BOα) = Z×AutBGm (Ptα) = Z×AutBGm (X). Recall
that the abelian category QCoh(X) decomposes as a product QCoh(X) = ∏n∈Z QCoh(X,αn).
Any element of AutBGm (X), which acts via pullback, preserves this decomposition. From
this we deduce that the group homomorphism above is surjective. By arguing with kernels,
we see that it is also injective. ∎
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