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Abstract. — This is an expanded version of a talk given during the 2014 Seattle Algebraic
Geometry Workshop: new connections for recent PhDs, organized by Max Lieblich and Martin
Olsson.
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Derived categories were introduced by Verdier [Ver96] to provide a good framework
to deal with homological algebra. For at least the last couple of decades (and with mirror
symmetry providing a lot of motivation), there has been much work focused on studying
purely D(X), the derived category of coherent sheaves on an algebraic variety X. In this
note we will take the point of view that D(X) is a “linearization” of sorts of X: an algebraic
gadget containing a great deal of information about X. We will have a look at what
are called semiorthogonal decompositions of D(X) and we will catch a brief glimpse of
Kuznetsov’s homological projective duality [Kuz07].

Literature. — There are many sources from which to learn the basics of the subject.
Most initiated swear by Huybrechts’s book [Huy06] and its spiritual appendix on stability
conditions [Huy14]. For a quick overview, I could not recommend more these six lectures
by Shinder [Shi] and the notes by Bodzenta–Logvinenko of a lecture series delivered
by Kuznetsov [log12]. One would be remiss without mentioning the trilogy of ICM
addresses [BO02, Bri06, Kuz14]. Finally, Thomas’s articles provide illuminating insight
[Tho01, Tho16].



CHOPPING UP DERIVED CATEGORIES 2

Conventions. — We work over the complex numbers. In what follows, X will denote a
smooth and projective variety.

1. Basics

There seems to be a standard spiel to motivate derived categories. Generally one starts
with some variation of “geometry is hard, algebra is easy” which (despite not being true)
provides a guiding principle. It is certainly an old and tested idea to study geometric
objects using algebraic invariants (such as homotopy groups, homology or Hodge theory).
Here we want to use derived categories.

Consider Vect(X), the whole category of (algebraic) vector bundles on X. We can view
this as a big invariant of X. Sadly Vect(X) is, categorically speaking, not a good choice:
one cannot always take the cokernel of a vector bundle map (in other words Vect(X) is
not an abelian category). To fix this, one passes to the bigger category Coh(X) of coherent
sheaves (which is abelian).

Recall that, for an affine variety Spec R, Vect(Spec R) is the category of (finitely
generated) projective R-modules and Coh(Spec R) is the category of all (finitely generated)
R-modules. For this reason, it is no surprise that passing from Vect(X) to Coh(X) is a
good idea.

However, there are two reasons why we prefer D(X) to Coh(X). Reason number one is
an old theorem of Gabriel: X is isomorphic to Y if and only if the categories Coh(X) and
Coh(Y) are equivalent (see the original [Gab62] and generalizations [Ros04, CG15, Bra13]).
In other words, Coh(X) is too rich! Reason number two is flexibility: even when D(X)
is just as rich as Coh(X), the former supports a theory of decompositions which Coh(X)
simply lacks.

Thus, for a better invariant we look at the derived category. We will write D(X) for
the bounded and coherent derived category of X. This means the objects of D(X) are
bounded chain complexes of coherent sheaves, while the morphisms are obtained by
formally inverting all quasi-isomorphisms. We will now highlight some features of D(X) but
we will not go into any details (once again, [Tho01] is highly recommended).

There is an inclusion Coh(X) ⊂ D(X), which takes a sheaf F and treats it as a chain
complex with zeros everywhere except in degree zero. An object E ∈ D(X), being a chain
complex, has cohomology Hi(E) ∈ Coh(X) for every i ∈ Z. There is a functor [1] on D(X)
called shift which takes a chain complex and moves everything one place to the left.

One does not have kernels and cokernels in derived categories (they are not abelian
categories). However, D(X) is an example of a triangulated category. A short exact sequence
in Coh(X)

0→ A→ B→ C→ 0

gives rise to what is called an exact triangle

A→ B→ C→ A[1]
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in D(X). Exact triangles are, by definition, a specified class of triples of morphisms in D(X).
An exact triangle A→ B→ C→ A[1] has an associated long exact sequence

⋯→ Hi−1(C)→ Hi(A)→ Hi(B)→ Hi(C)→ Hi+1(A)→ ⋯
of cohomology sheaves.

There are derived versions of the standard functors for coherent sheaves: Rf∗, Lf ∗,
L
⊗,

RHom. These are computed by taking a suitable resolution and then applying the ordinary
functor.

Convention. — In what follows, all functors will be implicitly derived, so that for example
we will omit the R from Rf∗.

For any two A, B ∈ Coh(X) we have HomD(X)(A, B[i]) = Exti
Coh(X)(A, B). We also

have a couple of extra properties (coming from smoothness and properness of X). The
category D(X) is Ext-finite: for any two A, B ∈ D(X), the C-vector space

⊕
i

Hom(A, B[i])

is finite-dimensional. We have Serre duality: for any two A, B there is an isomorphism

Hom(A, B) ≃ Hom(B, A⊗ ωX[n])∨

where ωX = ⋀n ΩX is the canonical bundle and n = dim X.
We want to abstract this last notion: we call SX(−) = (−) ⊗ ωX[n] the Serre func-

tor of D(X). It is the unique functor making the Serre duality isomorphisms pos-
sible. Whenever a triangulated category D admits an auto-equivalence SD, such that
Hom(E, F) = Hom(F, SD(E))∨, we call SD the Serre functor of D.

One might even think of any Ext-finite triangulated category with a Serre functor
as being a “non-commutative” variety (or rather, the derived category of sheaves on a
hypothetical non-commutative variety). It is useful at times to keep this point view in mind.

1.1. Derived invariants. — Now that we have D(X) it is natural to ask the following:

What information does D(X) contain?
More concretely, if D(X)≃ D(Y) what can we say about X and Y? For example, it’s easy
to show that dim X must be the same as dim Y. Differently put, dimension is a derived
invariant.

A fundamental theorem of Orlov tells us what functors between D(X) and D(Y) look
like. Given K ∈ D(X ×Y) we define the integral transform with kernel K to be the functor

ΦK(E) ∶= q∗ (K⊗ p∗E)
where p∶X ×Y → X and q ∶X ×Y → Y are the two projections. Orlov’s theorem says all
functors are integral transforms. We say the transform ΦK is Fourier–Mukai if it is an
equivalence.

For example, the identity D(X) → D(X) is given by the kernel O∆, with ∆ ⊂ X × X
the diagonal. More generally, given a morphism f ∶X → Y, pushforward f∗ is given by
the kernel OΓf

, where Γf ⊂ X ×Y is the structure sheaf of the graph of f . Similarly, for
g ∶Y → X, g∗ is given by OΓg

.
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Orlov’s theorem allows us to deduce interesting results. For example, Kodaira dimension
is a derived invariant. As an ungraded vector space, singular cohomology is also a derived
invariant. More precisely, even and odd cohomology are separately preserved while the
individual pieces may be scrambled under a derived equivalence. See for example [Abu15]
for more open questions in this area.

2. Decompositions

There exists a derived counterpart to Gabriel’s theorem. Let X and Y be two smooth
and projective varieties and assume X has ample (or anti-ample) canonical bundle. If
D(X) ≃ D(Y) then X ≃ Y (see [BO01] for the original article and [Rou10, Bal11, SdSSdS12,
MN10, Cal16] for generalizations). As discussed earlier, even for varieties where D(X)
recovers X, derived categories provide extra flexibility in the form of decompositions.

Suppose for a moment that X = Y ∐ Z is disconnected. If E is some sheaf on X, then
there is a natural morphism E → j∗j ∗E which is surjective with kernel i∗i∗E, where i , j
are the inclusions of respectively Y, Z. For E a complex in D(X) it’s exactly the same, only
we say there is an exact triangle

i∗i∗E→ E→ j∗j ∗E→ i∗i∗E[1].

Of course, in this special setup a much stronger statement is true: since we may swap the
roles of Y and Z, this exact triangle splits as a direct sum. Since this fact holds for all E,
we should be able to say that the category D(X) itself splits as a sum of D(Y) and D(Y).
Let us make this precise.

Definition 2.1. — Let A,B be two triangulated subcategories of D(X). We say that A,B
form an orthogonal decomposition (OD) of D(X) if

– Hom(B,A) = 0 = Hom(A,B) “orthogonality”
– for any E there is a unique exact triangle

A→ E→ B→ A[1]

with A ∈ A, B ∈ B.

Sometimes we refer to the second condition as expressing the “fullness” of the decompo-
sition. The following result is then no surprise.

Proposition 2.2. — X is disconnected if and only if it admits a (non-trivial) orthogonal
decomposition.

So we learned that D(X) knows when X is connected. Now, while there isn’t a topological
intermediate between being connected and being disconnected, on the algebraic side one
can weaken the definition.

Definition 2.3. — A pair of triangulated subcategories A,B ⊂ D(X) form a semiorthogonal
decomposition (ØD) of D(X) if

– Hom(A,B) = 0



CHOPPING UP DERIVED CATEGORIES 5

– for any E there is a unique exact triangle

A→ E→ B→ A[1]

with A ∈ A, B ∈ B.

When this occurs we write D(X) = ⟨B,A⟩.

Of course, the definition did not use anything special about D(X) and makes sense
in any triangulated category. For example, one might be able to decompose A or B

further. In general, a ØD of D(X) consists of a finite number of pieces and one writes
D(X) = ⟨A1, . . . ,An⟩. Being able to do things like this is one of the reasons we love algebra.

Before giving the first example let’s make a silly observation. Write D(C) for the derived
category of C-vector spaces. Notice that D(C) = D(pt), the derived category of a point. Let
E ∈ D(X). There is a functor φE∶D(C)→ D(X) which takes a complex of vector spaces V
to V ⊗C E. The image of φE is the smallest triangulated subcategory of D(X) containing
E. However, this category need not be the same as D(C), as φE may not be fully faithful.

Definition 2.4. — An object E is called exceptional if φE is fully faithful. More concretely,
E is exceptional if and only if Hom(E, E) =C and Hom(E, E[k]) = 0 for k ≠ 0.

By the way, a semiorthogonal decomposition consisting purely of exceptional objects is
called a full exceptional collection. That’s a great thing to have.

Theorem 2.5 (Beilinson). — Projective spaces admit a full exceptional collection.

D(Pn) = ⟨O,O(1), . . . ,O(n)⟩

where (to be pedantic) one should have written ⟨φO(D(C)), . . . ,φO(n)(D(C))⟩.

Caution. — Caution: the notation for ØDs is very misleading, in the sense that it lacks
crucial information. Consider the following three categories. The first two are T1 =
D(pt∐pt), T2 = D(P1). For the third, consider D(P2) = ⟨O,O(1),O(2)⟩ and take T3 =
⟨O,O(1)⟩, the smallest triangulated category containing O and O(1). In all three cases we
have Ti = ⟨D(C),D(C)⟩, however the three categories are very different.

The decomposition in T1 is completely orthogonal, so there are no maps between
the two components in either direction. For T2, the decomposition is not orthogo-
nal as HomP1(O,O(1)) = C2. The third case is similar, however T3 ≠ T2. Indeed,
HomP2(O,O(1)) = C3. Since one can easily classify exceptional collections on P1, one
concludes that T3 cannot be D(P1).

What the notation is hiding is the data of the maps going in opposite direction, which
can be thought as some gluing data (the intuition comes from topology, specifically the
theory of perverse sheaves [Wil]).

Non-example. — Assume X is K-trivial, i.e. ωX ≅ OX. When this holds, the Serre functor
of D(X) is just the shift [d] where d = dim X. In this case we say D(X) is a Calabi–Yau of
dimension d . Calabi–Yau categories admit only the trivial semiorthogonal decomposition.
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2.1. Examples. — We list some standard techniques to produce decompositions.

Theorem (Orlov [Orl92]). — Let E be a vector bundle of rank n + 1 on X and let
p∶PX(E) → X the projectivization. Let Op(1) be the relative tautological line bundle.
Then

D(P(E)) = ⟨p∗D(X),p∗D(X)⊗Op(1), . . . ,p∗D(X)⊗Op(n)⟩.

There is also a twisted version.

Theorem (Bernardara [Ber09]). — Let p∶Y → X a Brauer–Severi variety and let β be the
corresponding Brauer class.

D(Y) = ⟨p∗D(X),p∗D(X,β−1)⊗Op(1), . . . ,p∗D(X,β−n)⊗Op(n)⟩.

Recall that a Brauer–Severi variety is a an étale Pn -bundle. Concretely, there exists
an étale cover of X, such that on each patch U ⊂ X, one has p−1(U) = U ×Pn . These
gadgets are PGLn+1-torsors and are thus classified by H1

ét(X, PGLn+1). There is a short
exact sequence 0 → Gm → GLn+1 → PGLn+1 → 1. So from a Brauer-Severi variety
we get a class β ∈ H2

ét(X, Gm), which is called the Brauer class of p. One can use β to
define β-twisted sheaves which are assembled in an abelian category Coh(X,β). By D(X,β)
we mean its derived category. Finally, it should be pointed out that Op(−i) is actually
well-defined only as an f ∗βi -twisted sheaf.

Finally, we have the blowup formula.

Theorem (Orlov [Orl92]). — Let Y ⊂ X be a smooth subvariety of codimension c. Blow
it up.

E BlY X

Y X

i

p π

Because we are assuming smoothness, p is actually the projectivization of the normal bundle
of Y ⊂ X. We have the following decomposition.

D(BlY X) = ⟨π∗D(X), i∗p∗D(Y), i∗p∗D(Y)⊗Op(1), . . . , i∗p∗D(Y)⊗Op(c − 2)⟩

2.2. Mutations. — Another natural question in the theory is how many decompositions
does D(X) admit, if any? Apart from few special cases (such as the Calabi–Yau case or
curves) this question seems hard to answer. On the other hand, given a decomposition there
are operations called mutations which one can perform. Assume we have a semiorthogonal
decomposition D(X) = ⟨A1, . . . ,An⟩ and fix i . We have two functors (which we will not
define): LAi , RAi ∶D(X) → D(X), the left and right mutations along Ai . One has that LAi
is fully faithful when restricted to Ai+1 and RAi is fully faithful when restricted to Ai−1.
However, LAi (Ai) = 0 = RAi (Ai). But most importantly, we have two new decompositions

D(X) = ⟨A1, . . . ,Ai−1, LAiAi+1,Ai ,Ai+2, . . . ,An⟩
D(X) = ⟨A1, . . . ,Ai−2,Ai , RAiAi−1,Ai+1, . . . ,An⟩.

Because of fully faithfulness, the categories Ai+1 and LAiAi+1 are abstractly isomorphic.
However, the way they are embedded in D(X) changes quite a bit. This is similar Beilinson’s
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decomposition: all the components ⟨O(i)⟩ are equivalent to D(pt), but they are embedded
in D(Pn) in very different ways. In the case of a decomposition given by an exceptional
collection, the formulas for mutations become a great deal more explicit. The composition
of mutations also has an interesting structure, one sees for example an action of the braid
group. For more on this, see [Shi, Lecture 2].

2.3. Phantoms. — Here is another important question: given a two subcategories satisfy-
ing the first axiom of being a semiorthogonal decomposition, is there an efficient criterion to
tell if they also satisfy axiom two? Put differently, how do we tell whether a semiorthogonal
collection of subcategories is full (i.e. it spans the whole derived category)? Even for
exceptional collections there seems to be no good answer in general.

Recall that the Grothendieck group K0(X) is the free abelian group generated by isomor-
phism classes [E] of complexes E ∈ D(X) subject to the relations [A] = [B]+ [C] whenever
there is an exact triangle A→ B→ C→ A[1].

Remark. — Whenever you have a semiorthogonal decomposition the Grothendieck group
splits. Precisely, if D(X) = ⟨A1, . . . ,An⟩, then K0(X) =⊕i K0(Ai).

It was conjectured for a while that if you had a semiorthogonal collection, A1, . . . ,An ,
such that ⊕i K0(Ai) = K0(X) then the collection had to be full. Any collection can be
completed to a decomposition, just by considering the subcategory orthogonal to the rest.
In other words, given a semiorthogonal collection A1, . . . ,Ar , we always have

D(X) = ⟨A1, . . . ,Ar ,B⟩

where B consists of all objects B such that Hom(B, A) for all A ∈ Ai and for all i . So the
question boils down to the following: can one find an example of a B such that K0(B) = 0?

Such categories are called phantoms and, sadly, they do exist (even inside surfaces!). See
[GO13, BGvBKS15, Kuz15] and also [Sos15] for an interesting list of open questions.

3. Homological Projective Duality

We devote the rest of this article to a glimpse of Kuznetsov’s homological projective duality
(HPD). Consider a hypersurface X ⊂ PN of degree d ≤ N. We have a decomposition

D(X) = ⟨AX,OX,OX(1), . . . ,OX(N − d)⟩

where AX is (by definition) the orthogonal of the category spanned by OX, . . . ,OX(N − d)
[Kuz06]. When X is understood, we drop the subscript and simply write A. Notice that the
Bondal–Orlov theorem applies here, given that the canonical of X is anti-ample.

In some cases, the “interesting” component A seems to be a rich invariant of X. For
example, we have the following result.

Theorem 3.1 (Bernardara-Macrì–Mehrotra [BMMS12]). — Let X and Y be two cubic
threefolds with respective components AX, AY . If AX ≃ AY then X ≃ Y.
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A natural question is if there are any general properties satisfied by the category A. Being
a component of D(X), A is Ext-finite and admits a Serre functor SA. While it is not easy to
give an explicit formula for SA, Kuznetsov deduced the following striking property.

S
d/ gcd(N+1,d)
A = [(d − 2)(N + 1)

gcd(N + 1,d) ] .

In other words, a power of the Serre functor is always a shift! Phrased differently, A is a
Calabi–Yau category of fractional dimension. See [Kuz16] for a general discussion of these
categories.

If one chooses N and d carefully, one can arrange for A to be genuinely Calabi-Yau. This
occurs in the case of cubic fourfolds. If X ⊂ P5 is a cubic, the corresponding component
A is Calabi-Yau of dimension 2. Since two-dimensional Calabi-Yau varieties are the K3
surfaces, a natural question arises:

is there a K3 surface Y such that D(Y) ≃ A?

It is easy to see that generically (in the space of cubic fourfolds) this cannot be true: the
Grothendieck group of A is simply of the wrong rank. However, in [Kuz10], Kuznetsov
studies some well known examples of rational cubic fourfolds and formulates the following
conjecture.

Conjecture 3.2 (Kuznetsov). — Let X be a cubic fourfold and let AX be the corresponding
component of D(X). Then there exists a K3 surface Y and an equivalence Y ≃ AX if and
only if X is rational.

If true, this conjecture would easily imply that the generic cubic fourfold is irrational. The
magnitude of such a fact should be highly emphasized. It has been expected for a long time
that the generic cubic fourfold is irrational and much research is being devoted to finding
a proof. It should be noted that Kuznetsov’s conjecture does not come from a vacuum:
Hassett had already noticed a relationship between the Hodge theory of cubic fourfolds and
related K3 surfaces [Has00]. See the remarkable paper [AT14] for the relationship between
the derived category and the Hodge theoretic points of view. See also [Huy15] where the
properties of the AX category are explored further. We must also mention that (in spite of
expectations of their scarcity) new examples of rational cubic fourfolds have been found
[AHTVA16]. Finally, Huybrechts and Rennemo have recently announced a proof of Torelli
for cubic fourfolds which goes through the AX category.

3.1. Families. — Let us go back to the general theory. Consider again projective space
PN and fix d ≤ N. So far we’ve had a look at a fixed hypersurface X ⊂ PN. The obvious
next step is to see what happens in a family. Consider two hypersurfaces X0, X1. We can
do two things: intersect them or consider the pencil spanned by them. We assume that
the former Z = X0 ∩X1 is smooth of dimension N − 2. If f0, f1 are the equations defining
X0 and X1, the total space H of the pencil is described by the equation y0f0 + y1f1 = 0 in
PN ×P1, where [y0, y1] are coordinates on P1. Drawing a diagram might be useful.
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Ht H

pt P1t

Given a point t ∈ P1, above we wrote Ht for the fibre of H at t . Concretely, if t = [a, b] ∈ P1,
Ht is the hypersurface cut out by the equation af0 + bf1 = 0 in PN. We have H0 = X0 and
H∞ = X1.

Kuznetsov further observed not only the existence of a decomposition

D(Z) = ⟨AZ,OZ, . . . ,OZ(N − 2d)⟩
(we are implicitly assuming 2d ≤ N) but also of a decomposition

D(H) = ⟨AH,O,O(0, 1),O(1, 0),O(1, 1), . . . ,O(d , 0),O(d , 1)⟩.
For each (smooth) cubic fourfold Xt in the pencil, we have a corresponding component
AHt

. The idea is that AH is the “total space” of all these categories. Indeed, Kuznetsov
shows that the image of AH (via pullback along Ht → H) inside D(Xt) is precisely AXt

!
But what role does Z play? It turns out that AZ is equivalent to AH. This baby case of
HPD can actually be proved directly: since H is the blowup of PN along Z, Orlov’s formula
(plus a few mutations) does the job (see [Tho16] for details, or [CT16] for the case of cubic
fourfolds).

But more is true. This relationship between derived categories of total spaces of linear
systems and base loci is true more generally. Remarkably, there is also a basechange
compatibility when passing to different subsystems and results also hold for singular
varieties. HPD is a very robust theory. But the true testament of its strength is the wealth
of examples and of results which it has inspired [Del11, CT16, BBF16, BT16, BDF+13,
BDF+14, CT15, Tab16, Vol15, HT13, HT15, Per].

What we have not explained yet is the word duality in HPD. Indeed, the whole point of
the theory is that these A categories should have a geometric counterpart. We will explain
this for quadrics in the next section.

4. Quadrics

Quadrics are degree two hypersurfaces and we will stick to the even dimensional case for
simplicity. Kapranov showed that for a smooth quadric Q ⊂ P2N−1 there is a decomposition

D(Q) = ⟨O(−2n + 3), . . . ,O(−1),O, S+, S−⟩

where S± are the so-called spinor vector bundles. For a quadric surface Q ≃ P1 ×P1 they
can be identified with O(1, 0) and O(0, 1). As objects of D(Q), S+, S− are completely
orthogonal. In other words ⟨S+, S−⟩ = D(pt∐pt). Thus, up to mutations, we have described
Kuznetsov’s category AQ = ⟨S+, S−⟩ = D(pt∐pt).

Suppose now we have a family of quadrics H→ L, over a base variety L. For each l ∈ L
we write Hl for the fibre. We are interested in the component Al , spanned by the two spinor
bundles on Hl . As l moves in L, the two spinor bundles vary. Intuitively, we expect D(H)
to have a decomposition with an interesting component AH, which serves as the total space
for all the categories Al . We then would like to consider the double cover Y → L, whose
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fibres Yl correspond to the two spinor bundles. Finally, we expect the “universal spinor
bundles” on Q ×L Y to be the kernel of a Fourier–Mukai equivalence D(Y) ≃ AQ.

There are indeed cases where this geometric description can be made rigorous, with a
few hiccups. One issue is that when dim L ≥ 2 a universal spinor bundle needn’t exist. In
moving in a family there is an obstruction to keeping track of the order of S+, S− and one
has not a universal sheaf, but rather a twisted sheaf. In other words, there is a Brauer class
α ∈ H2

ét(Y,Gm) encoding how much S+, S− are shuffled around. We would then expect
D(Y,α) – the derived category of α-twisted sheaves – to be equivalent to AQ. A second
issue is that singularities might make life impossible.

Let us now revert to the more rigid setup of a linear family L ⊂ PH0(P2N−1,O(2)) of
quadrics. Let H ⊂ L ×P2N−1 be the total space. For each l ∈ L we have the fibre Hl and
corresponding component Al . Let us draw a diagram.

Hl H L ×P2N−1

pt Ll

In this setup we actually know there is a decomposition of D(H) with the interesting
component AH one side and line bundles of the form O(i , j ) on the other. As before, the
image of AH under pullback along Hl → H is Al .

Consider the case where dim L = 1, a pencil of quadrics. Assume L is spanned by Q0, Q1
and that Q0 ∩Q1 is smooth of the expected dimension. Let Y → L be the double cover
of L branched over the locus of singular quadrics. In this case, Y is indeed a fine moduli
space of spinor bundles for H→ L. Bondal and Orlov proved [BO95] that (generically) the
following decomposition holds

D(Q0 ∩Q1) = ⟨O(2N − 5, . . . ,O(−1),O,D(Y)⟩.

So here we already see both features of HPD: using derived categories we relate the base
locus Q0 ∩Q1, to the total space H and to the “dual” Y.

Let’s move on to dim L = 2. Assume again L to be spanned by Q0, Q1, Q2 and that
Q0 ∩Q1 ∩Q2 is smooth and of the expected dimension. Again, we can consider the double
cover Y → L branched over the singular quadrics. This time, Y is no longer fine. As
mentioned earlier, there is an obstruction in the form of a Brauer class α ∈ H2

ét(Y,Gm).
Nevertheless, Cǎldǎraru [Cal00] was able to show that the following decomposition holds.

D(Q0 ∩Q1 ∩Q2) = ⟨O(2N − 7), . . . ,O(−1),O,D(Y,α)⟩.

Finally, let us move to dim L = 3. Here things get even more problematic: the double
cover Y is no longer smooth. Addington solved this problem by introducing a well-behaved
notion of spinor sheaf for the singular quadrics [Add11]. After taking a suitable (non-Kähler!)
resolution Ỹ → Y, one still has a decomposition [Add09]

D(Q0 ∩Q1 ∩Q2 ∩Q3) = ⟨O(2N + 9), . . . ,O(−1),O,D(Ỹ,α)⟩.

However, for dim L = 4 and above I do not know of any successful geometric approach
to this problem.
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4.1. Clifford algebras. — Homological projective duality gives an alternative (more al-
gebraic) explanation of the equivalences discussed above, which however works in any
dimension. Recall that, given a quadratic form q on a vector space V, the Clifford algebra
of q is the quotient of the tensor algebra of V by the ideal generated by v ⊗ v − q(v) for
v ∈ V. Let us write C = C(V, q) for this algebra. It is Z/2Z-graded. We write C0 for
the even-degree subalgebra. The category of C0-modules is actually easy to describe: the
algebra C0 splits as a product of two matrix algebras (because we are working over the
complex numbers and with even-dimensional quadrics). By Morita theory, we then know
that D(C0) = D(C ×C) = D(pt∐pt). This should remind us of the component AQ of the
corresponding quadric!

First off, it is easy to make sense of families of Clifford algebras on a variety (by replacing
vector spaces with sheaves). If L ⊂ PH0(P2N−1,O(2)) is a linear space of qudarics, we
have a sheaf C0 of (even-degree) Clifford algebras on L. Over l ∈ L, the fibre of C0 will be
the Clifford algebra of the quadratic form corresponding to the quadric Hl . Let us write
D(L, C0) for the derived category of coherent sheaves on L equipped with the structure of
a module over C0.

Assume L is spanned by quadrics Q0∩⋯∩Qm−1 such that m ≤ N and their intersection
Z is smooth of the expected dimension. Then Kuznetsov showed [Kuz08] that D(Z) has a
decomposition

⟨O(−2N +m + 1), . . . ,O(−1),O,D(L, C0)⟩.
One can more or less directly recover the equivalences above. Indeed, the algebra C0 has
a center A. The relative spectrum of A defines a variety Y → L, which is a double cover
branched over the locus of singular quadrics. For dim L = 2, the algebra C0 (when viewed
as defined on Y) turns out to be an Azumaya algebra. An Azumaya gives rise to a Brauer
class α: the category of C0-modules is equivalent to that of α-twisted sheaves over Y.

When the dimension of L is higher, the nature of the algebra C0 is more complicated.
Nevertheless, this dual (non-commutative) variety (L, C0) gives a powerful description of
the derived category of a (complete) intersection of quadrics.
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