
J. ALGEBRAIC GEOMETRY
25 (2016) 1–18
http://dx.doi.org/10.1090/jag/660

Article electronically published on September 17, 2015

ON THE CREPANT RESOLUTION CONJECTURE
FOR DONALDSON-THOMAS INVARIANTS

JOHN CALABRESE

Abstract

We prove a comparison formula for curve-counting invariants in the set-
ting of the McKay correspondence, related to the crepant resolution
conjecture for Donaldson-Thomas invariants. The conjecture is con-
cerned with comparing the invariants of a (hard Lefschetz) Calabi-Yau
orbifold of dimension three with those of a specific crepant resolution of
its coarse moduli space. We prove the conjecture for point classes and
give a conditional proof for general curve classes. We also prove a vari-
ant of the formula for curve classes. Along the way we identify the image
of the standard heart of the orbifold under the Bridgeland-King-Reid
equivalence.
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Introduction

This paper deals with the crepant resolution conjecture for Donaldson-

Thomas (DT) invariants as stated in [BCY12, Conjectures 1 and 2]. Our goal

is to give a full proof of Conjecture 2 and a conditional proof of Conjecture

1. We also prove a variant of Conjecture 1 for “partial” DT invariants.

The goal of these conjectures is to pin down the relationship between the

DT invariants of a CY3 orbifold X, satisfying the hard Lefschetz condition,
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2 JOHN CALABRESE

and the DT invariants of a natural crepant resolution Y → X of its coarse

moduli space X. Concretely, we relate counting invariants of X and Y . The

proof employs a derived equivalence between X and Y , which is a “global” ver-

sion of the McKay correspondence of Bridgeland-King-Reid [BKR01,CT08].

We prove that the image of the heart Coh(X) under this equivalence is Bridge-

land’s category of perverse coherent sheaves Per(Y/X) [Bri02].

Before writing the formula in symbols, it is profitable to spend a few words

on the setup of the conjecture.1 Given a smooth and projective Calabi-Yau2

threefold M , we can define the DT invariants of M as weighted Euler charac-

teristics3

DTM (β, n) := χtop (HilbM (β, n), ν) =
∑
k∈Z

kχtop

(
ν−1(k)

)

where χtop is the topological Euler characteristic, β ∈ N1(M) is the homology

class of a curve, n is an integer, HilbM (β, n) is the Hilbert (or Quot) scheme

parameterising quotients of ØM � E of class (ch0 E, ch1 E, ch2 E, ch3 E) =

(0, 0, β, n) and ν is Behrend’s microlocal function [Beh09]. We formally pack-

age these numbers into a generating series:

DT (M) :=
∑

(β,n)∈N1(M)⊕Z

DTM (β, n)q(β,n).

Taking Chern characters (and using [Bri11, Lemma 2.2]) we can replace

N1(M) ⊕ Z with the numerical Grothendieck group. To be precise, we let

N(M) be the K-group of coherent sheaves on M modulo numerical equiva-

lence and we define F1N(M) to be the subgroup spanned by sheaves supported

in dimension at most one. It follows that DT (M) can alternatively be indexed

by F1N(M):

DT (M) =
∑

α∈F1N(M)

DTM (α)qα,

and we will switch between one indexing and the other depending on circum-

stances. There is also a subgroup F0N(M) spanned by sheaves supported in

dimension zero, and we can define

DT0(M) :=
∑

α∈F0N(M)

DTM (α)qα.

1The reader interested in more background on DT theory (and curve-counting in general)
could start from [PT11].

2For us Calabi-Yau means having trivial canonical bundle ωM
∼= ØM and torsion fun-

damental group H1(M,ØM ) = 0.
3There is a minor sign issue in this definition. We expand upon it in Remarks 2.3 and

2.4. A quick inspection will show that the main formulae we prove hold regardless of sign
conventions.
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THE CREPANT RESOLUTION CONJECTURE FOR DT INVARIANTS 3

Now let X be a projective Calabi-Yau orbifold of dimension three and let

X be its coarse moduli space. By [BKR01,CT08] there is a crepant resolution

Y → X of X given by an appropriate Hilbert scheme of points of X:

Y X

X

f g

The global McKay correspondence tells us, moreover, that Y and X are derived

equivalent via Fourier-Mukai transforms

Φ : D(Y ) � D(X) :Ψ

inducing isomorphisms between the corresponding (numerical) K-groups. We

also assume f to have fibres of dimension at most one. This is equivalent to

requiring X to be hard Lefschetz (cf. [BG09, Lemma 24]).

Let FexcN(Y ) ⊂ F1N(Y ) be the subgroup spanned by sheaves whose sup-

port is contracted to a point by f . We have a corresponding DT series

DTexc(Y ) :=
∑

(β,n)∈N1(Y )⊕Z

f∗β=0

DTY (β, n)q
(β,n)

and a variant which will be useful later:

DT∨
exc(Y ) :=

∑
(β,n)∈N1(Y )⊕Z

f∗β=0

DTY (−β, n)q(β,n).

Over X we define4 FmrN(X) ⊂ F1N(X) to be the image, under the McKay

correspondence functor Φ, of F1N(Y ). We draw a diagram expressing the

compatibilities among the various classes,

(Δ)

F0N(Y ) FexcN(Y ) F1N(Y )

F0N(X) FmrN(X) F1N(X),

Φ Φ

and we write the corresponding DT series:

DTmr(X) :=
∑

α∈FmrN(X)

DTX(α)q
α, DT0(X) :=

∑
α∈F0N(X)

DTX(α)q
α.

4The subscript mr stands for multi-regular; see [BCY12].
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4 JOHN CALABRESE

In [BCY12] two formulae are conjectured to hold:

DTmr(X)

DT0(X)
=

DT (Y )

DTexc(Y )
,(C1)

DT0(X) =
DTexc(Y )DT∨

exc(Y )

DT0(Y )
.(C2)

We give here a proof of (C2). In the case of transverse A-singularities, this

identity was proved by Jim Bryan in the appendix to [You10]. Shortly before

the last version of the present paper appeared on the arXiv, a proof of (C1)

in the toric case with A-singularities was given by Dustin Ross [Ros14].

Given (C2), we see that proving (C1) is equivalent to showing the following:

DTmr(X) =
DT (Y )DT∨

exc(Y )

DT0(Y )
.(C0)

We give a conditional proof of (C0) (and thus of (C1)). We also provide an

unconditional proof of a variant of (C0),

DT∂
mr(X) =

DT ∂(Y )DT∨
exc(Y )

DT0(Y )
,(C0∂)

for invariants DT ∂ defined by taking the weighted Euler characteristic of

appropriate open subschemes of Hilb and P-Hilb; see Corollary 2.11.

A sketch of the proof. The key result is identifying the image (via Ψ)

of Coh(X) inside D(Y ). It turns out that Ψ(Coh(X)) is none other than

Bridgeland’s heart of perverse coherent sheaves Per(Y/X). The relationship

between Per(Y/X) and DT invariants was studied in [Cal11] (and previously

in [Tod09]). What follows contains the main ideas of the proof, although it

glosses over an issue of signs; this is explained in Remarks 2.3 and 2.4. As

ØY ∈ Per(Y/X), one has a perverse Hilbert scheme P-HilbY/X(α) parame-

terising quotients of ØY in Per(Y/X) of numerical class α. One can then

define

DTY/X(α) := χtop

(
P-HilbY/X(α), ν

)

and

DT (Y/X) :=
∑

α∈F1N(Y )

DTY/X(α)qα

DTexc(Y/X) :=
∑

α∈FexcN(Y )

DTY/X(α)qα.
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THE CREPANT RESOLUTION CONJECTURE FOR DT INVARIANTS 5

The Fourier-Mukai transform Ψ not only identifies Coh(X) with Per(Y/X)

but also the corresponding Hilbert schemes, so that we have HilbX(α) =

P-HilbY/X(ψ(α)). One then obtains for free an identification between the

generating series:

DTmr(X) = DT (Y/X) and DT0(X) = DTexc(Y/X).

In [Cal11, Theorem 4.4] the following relation betweenDT (Y/X) and ordinary

DT invariants was proved:

DTexc(Y/X) =
DT∨

exc(Y )DTexc(Y )

DT0(Y )
,(�)

which instantly implies (C2), i.e. [BCY12, Conjecture 2].

To establish [BCY12, Conjecture 1] (in other words, to show (C0)) it would

suffice to have the formula

DT (Y/X) =
DT∨

exc(Y )DT (Y )

DT0(Y )
,(��)

which, however, is not proved in [Cal11].

Remark. The reader familiar with work of Toda, might notice that (��)

is implied by [Tod09, Theorem 7.3]. Unfortunately, the author has confirmed

(through private communication during the 2014 GRIFGA/Lebesgue summer

school held in Nantes) that the formula appearing in that theorem should be

modified. In other words, the techniques of [Tod09] (just as those of [Cal11])

do not in fact extend verbatim to our present setting.

However, a variant of (��) was proved [Cal11, Theorem 3.30]. To state it,

we need to make a few definitions. Let P-Hilb∂Y/X(α) denote the open subspace

of P-HilbY/X(α), parameterising epimorphisms ØY → E with dim suppE ≤
1. Recall that the support of a complex is defined to be the union of the sup-

ports of its cohomology sheaves. Since X is allowed to have one-dimensional

singular locus, one cannot detect whether E ∈ Per(Y/X) is supported on a

curve simply by looking at its numerical class. By taking the weighted Euler

characteristic of P-Hilb∂ we obtain “partial” DT invariants DT ∂(Y/X). On

the orbifold side, let Hilb∂X be the image of P-Hilb∂Y/X under Φ, together with

the corresponding partial invariants on X, DT ∂(X). It tautologically follows

that

DT ∂
mr(X) = DT ∂(Y/X)

with the usual identification of numerical classes under the McKay correspon-

dence. Now let Hilb∂Y ⊂ HilbY be the open subset parameterising those quo-

tients ØY � E such that the following condition holds: if we view ØY → E

as a morphism in Per(Y/X), then the perverse cokernel (i.e. the cokernel in

the abelian category Per(Y/X)) lies in Coh≤1(Y )[1]. In general, the perverse
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6 JOHN CALABRESE

cokernel of ØY → E is a sheaf shifted by 1; here we add the condition that it

is the shift of a sheaf supported in dimension at most one (see [Cal11, Lemma

1.4]). Let us denote the invariants we obtain by DT ∂(Y ). The “partial”

version of (��) holds:

DT ∂(Y/X) =
DT ∂(Y )DT∨

exc(Y )

DT0(Y )
,

from which the variants of (C0) and (C1) [BCY12, Conjecture 1],

DT ∂
mr(X) =

DT ∂(Y )DT∨
exc(Y )

DT0(Y )
,

DT ∂
mr(X)

DT0(X)
=

DT ∂(Y )

DTexc(Y )
,

are deduced. Although not relevant for the present paper, we point out that

when X has zero-dimensional singular locus all the “partial” moduli spaces

coincide with the ordinary ones and thus DT ∂ = DT throughout.

We also mention a different approach to prove the crepant resolution con-

jecture proposed by Bryan-Steinberg in [SB12]. They develop new invariants,

which are a relative version of the stable pair invariants of Pandharipande-

Thomas (PT), and prove a DT/PT comparison formula. The goal would be

to relate the Bryan-Steinberg invariants of Y/X with the PT invariants of X

and then use the DT/PT formula for X announced by Arend Bayer. Unfor-

tunately, a direct comparison using the Fourier-Mukai transform Φ does not

seem to work. We feel this issue must be related to the difference between

DT and DT∂ .

Structure of the paper. The paper is divided into two sections. The

first one is the core, as it contains the proof of the fact that Coh(X) is sent

to Per(Y/X) via the derived equivalence. In the second section we apply this

result to Donaldson-Thomas invariants.

Conventions. We work over the field of complex numbers C. For a scheme

(or stack) M , D(M) will denote the bounded derived category of coherent

ØM -modules.

1. The equivalence between Per(Y/X) and Coh(X)

We work in the following setup.

Situation 1.1. Let X be a smooth, quasi-projective, Deligne-Mumford

stack of dimension n. Assume the canonical bundle ωX is Zariski-locally

trivial and denote by X the coarse moduli space of X.

Remark 1.2. The bundle ωX on X is Zariski -locally trivial if there exists

a Zariski open cover X′ → X (where we allow X′ to be a stack) such that the

restriction ωX|X′ is trivial. This is a technical condition which, by working
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THE CREPANT RESOLUTION CONJECTURE FOR DT INVARIANTS 7

locally on the coarse space X, allows us to reduce to the setting of [BKR01]. In

fact, in the case where X = [V/G], it amounts to requiring that the canonical

bundle of V be G-equivariantly locally trivial. This condition seems to be

missing in [CT08].

It is beneficial to recall the framework of [CT08]. A candidate for a res-

olution of X (and a replacement for the equivariant Hilbert scheme found

in [BKR01]) is given by the irreducible component Y of the Hilbert scheme

Hilb(X) containing the non-stacky points of X.5 The morphism g : X → X

induces a morphism Hilb(X) → Hilb(X) and, by restriction, a morphism

f : Y → X. We draw a diagram:

Y × X

Y X

X

f g

πY πX

Under the additional assumption that Y ×X Y is at most of dimension n+1,

it is proved in [CT08] that Y is smooth and that f is a crepant resolution.

Furthermore, the scheme Y represents a moduli functor, and its corresponding

universal object is a quotient ØY×X � ØZ. Finally, it is shown that one has

a Fourier-Mukai equivalence D(Y ) � D(X) with kernel given by ØZ.

We recall three key results involved in the proof: the Hilbert scheme

Hilb(X) commutes with étale base-change onX [CT08, Proposition 2.3]; étale-

locally on X the space X is isomorphic to a quotient stack [V/G], with V

smooth and affine and G a finite group (whose coarse space is thus the quo-

tient V/G) [AV02, Lemma 2.2.3]; the Hilbert scheme of [V/G] is isomorphic

to Nakamura’s G-equivariant Hilbert scheme G- Hilb(V ) [CT08, Lemma 2.2].

Using these facts one reduces to [BKR01], as checking that the given kernel

produces an equivalence may be done locally [CT08, Proposition 3.3].

Remark 1.3. As is usual with integral transforms, the kernel ØZ may

be interpreted as giving a functor in two different directions. The standard

Mukai-implies-McKay convention is to take ØZ to define a functor Φ: D(Y ) →
D(X) [BKR01,CT08]. To deal with a technical issue (caused by [Cal11]), we

will also consider Φ̂ = DΦD : D(Y ) → D(X), where D = RHom(−,Ø) is the

5It is probably helpful to remark that for a stack X there might be some ambiguity in the
term Hilbert scheme (see [Ryd11]). However, we shall always interpret Hilbert schemes as
Quot functors, which for Deligne-Mumford stacks were studied by Olsson and Starr [OS03].
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8 JOHN CALABRESE

duality functor. We denote by Ψ the inverse of Φ and by Ψ̂ the inverse of

Φ̂. When Y and X are projective, the relationship between Φ and Φ̂ is quite

simple, as Ψ̂ is given by the Fourier-Mukai transform with kernel ØZ (this is

a standard consequence of [BBHR09, Propositions 1.13 and 1.15]).

We now briefly remind the reader of Bridgeland’s heart of perverse coherent

sheaves [Bri02]. In some sense, it is a reflection of the ambiguity revolving

around the kernel ØZ that we consider both the −1 and 0 perversity. The

category pPer(Y/X) of perverse coherent of perversity p ∈ {−1, 0} consists of

those complexes E ∈ D(Y ) satisfying

• Rf∗E ∈ Coh(X),

• Ext−i
Y (E,C) = 0 = Ext−i

Y (C,E), for all i > p and all C ∈ Coh(Y )

such that Rf∗C = 0.

The rest of this section is devoted to the proof of the following statement.

Theorem 1.4. Assume we are working in Situation 1.1 and assume in

addition that f has relative dimension at most one. Then the equivalence

Φ between D(Y ) and D(X) restricts to an equivalence of abelian categories

between 0Per(Y/X) and Coh(X), while the equivalence Φ̂ restricts to an equiv-

alence between −1Per(Y/X) and Coh(X).

Remark 1.5. Notice that the condition dimY ×X Y ≤ n + 1 follows

automatically from the condition on the fibres of f .

In particular 0Per(Y/X) is equivalent to −1Per(Y/X). We also point out

that the composition Φ̂Φ−1 gives a non-trivial autoequivalence of D(X), which

seems related to the window shifts of Donovan-Segal [DS12]. It might be

worthwhile to compute this equivalence in explicit examples.

Let us now begin the proof of the theorem, which will be divided into small

steps. We start by considering Φ.

Step 1. Given an object of the derived category, membership of either of

the categories in question can be checked étale-locally on X [VdB04, Proposi-

tion 3.1.6]. Thus, by base-changing over étale patches of X, we can reduce to

the case where X is affine and furthermore X = [V/G] with V a smooth affine

scheme and G finite. Moreover, the functors Φ and Ψ (being Fourier-Mukai)

commute with this base-change [BBHR09, Proposition 6.1].

Step 2. It suffices to prove Ψ(Coh(X)) ⊂ 0Per(Y/X) because of the fol-

lowing well-known trick.

Lemma 1.6. Let A and B be two hearts relative to two bounded t-structures

in a triangulated category. Then A ⊂ B if and only if B ⊂ A.

Proof. Given an object E let us denote by Hi
A(E) (respectively Hi

B(E))

the i-th cohomology object relative to A (resp. B). Assume A ⊂ B. Let

E ∈ B. As E already lies in B we have E � H0
B(E) and Hi

B(E) = 0 for i �= 0.

Consider now the cohomology filtration of E relative to A. As objects of A
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THE CREPANT RESOLUTION CONJECTURE FOR DT INVARIANTS 9

are also in B, this filtration is also a filtration relative to B. By uniqueness

of the cohomology objects we have Hi
A(E) = Hi

B(E) = 0 for i �= 0. Thus

E ∈ A. �

Step 3. To prove the mentioned inclusion we will exhibit two systems of

generators (see definition below), one for 0Per(Y/X) and one for Coh(X), and

show that elements of the first system are sent to the second.

Definition 1.7. Let D be a triangulated category and let A be the heart

of a bounded t-structure. A collection P of objects of A is a system of

projective generators if, for all A ∈ A \ {0} and all P ∈ P, Ext•D(P,A) is

concentrated in degree zero and for all A ∈ A there exists PA ∈ P such that

HomD(PA, A) �= 0.

By [VdB04, Lemma 3.2.4], when X is affine, we have a system of generators

P for 0Per(Y/X) consisting of vector bundles P such that

• R1f∗P = 0,

• P∨ is generated by global sections.

For Coh(X) we also have a nice system of generators.

Lemma 1.8. The collection Q of vector bundles on X is a system of gen-

erators for Coh(X).

Proof. As we are working in the case X = [V/G], it is easy to reduce the

problem to bundles on V . In fact, coherent sheaves on X are G-equivariant

coherent sheaves on V . Given an equivariant vector bundle P and an equi-

variant sheaf E on V we have that G- ExtiV (P,E) = ExtiV (P,E)G, where

the latter is the G-invariant part [BKR01, Section 4.1]. As V is affine, these

groups vanish for i > 0.

Now fix an equivariant sheaf E. We want to find an equivariant vector

bundle P such that HomV (P,E)G �= 0. By [BKR01, Lemma 4.1] HomV (P,E)

splits as a direct sum of HomV (P ⊗ ρ,E)G ⊗ ρ, where ρ ranges among the

irreducible representations of G. The claim thus follows as P ⊗ ρ is a vector

bundle. �

Step 4. We now conclude the proof by showing that elements of P are

sent to elements of Q. First we remark that we can check whether a complex

on X = [V/G] is a vector bundle by pulling back to the étale atlas V → [V/G].

Thus, if P ∈ P, we are interested in the pullback of Φ(P ) to V . This allows

us to reduce to the setup of [BKR01], where one has the following diagram:
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10 JOHN CALABRESE

Z

Y × V

Y V

X

p q

i

πY πV

f g

Here Z is the universal G-cluster for the action of G on V , q and f are

proper and birational, p and g are finite and p is also flat. Moreover, the

quotient ØY×V � ØZ is precisely the pullback, under the morphism Y ×V →
Y × [V/G] = Y × X, of the universal quotient ØY×X � ØZ, which we used

to define Φ. It follows that applying Φ followed by pulling back to V is the

same as applying Rq∗p
∗.

We are thus reduced to checking that, given an element P ∈ P, the com-

plex Rq∗p
∗P is actually a vector bundle.

Lemma 1.9. Let P ∈ Coh(Y ) satisfy R1f∗P = 0. Then Rq∗p
∗P ∈

Coh(X).

Proof. Notice that Rq∗p
∗P = RπV,∗i∗p

∗P = RπV,∗(π
∗
Y P ⊗ ØZ), where

we made the standard identification ØZ = i∗ØZ . We point out that, as

a consequence of our assumption on f , πV,∗ is of homological dimension at

most one (we remind the reader that we work under the reduction done in

Step 1; in particular X is affine).

By tensoring the quotient ØY×V � ØZ with π∗
Y P we produce a surjec-

tion π∗
Y P � π∗

Y P ⊗ ØZ . Applying πV,∗ yields a surjection R1πV,∗π
∗
Y P �

R1πV,∗(π
∗
Y P ⊗ØZ). But R

1πV,∗π
∗
Y P = H1(Y, P )⊗CØV and H1(Y, P ) = 0 as

R1f∗P = 0, hence the claim. �
Lemma 1.10. Let P ∈ P; then Rq∗p

∗P is a vector bundle on V .

Proof. We know that the dual of P is generated by global sections; hence

there exists a short exact sequence

K ↪→ Ø⊕m
Y � P∨.

From the fact that P and ØY are vector bundles it follows that K is also a

vector bundle. We therefore have a dual sequence

P ↪→ Ø⊕m
Y � K∨.
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THE CREPANT RESOLUTION CONJECTURE FOR DT INVARIANTS 11

It follows from the previous lemma, plus the fact that q∗ØZ = ØV , that

applying Rq∗p
∗ yields an exact sequence

q∗p
∗P ↪→ Ø⊕m

V � q∗p
∗K∨.

To prove our claim it suffices to check that Ext1V (q∗p
∗P,M) = 0 for all modules

M on V . By the above short exact sequence this is the same as showing that

Ext2V (q∗p
∗K∨,M) = 0 for all modules M . Using Grothendieck duality for q

we have

Ext2V (q∗p
∗K∨,M) = Ext2Z(p

∗K∨, q!M) = H2(Z, p∗K ⊗ q!M).

The scheme Z admits a finite and flat map to a smooth variety (f : Z → Y );

thus it is Cohen-Macaulay. Moreover, as dimZ − dimV = 0 and q is of finite

tor-dimension, the complex q!M is concentrated in non-positive degrees. As

our assumption on f implies that Hi(Z,E) = 0 for all i > 1 and all sheaves

E, the hypercohomology spectral sequence tells us that H2(Z, p∗K ⊗ q!M) =

0. �
The previous lemma concludes the first half of the proof. As is often the

case, the second half is much shorter than the first. In fact, to prove the

statement for −1Per(Y/X) and Φ, one need only notice the following:

• Φ̂ = DΦD,

• the dual system P∨ = DP is a system of generators for −1Per(Y/X)

[VdB04, 3.2.3],

• the system Q is self-dual DQ = Q.

This concludes the proof, and we can now move on to comparing the DT

invariants of X and Y .

Remark 1.11. For the next section, it will be important to know that

Φ(ØY ) = ØX. We already know that Φ(ØY ) is a vector bundle given by

Rq∗ØZ. By restricting to the smooth locus of X (viz. to an open subset where

Φ is the identity) we see that Rq∗ØZ is in fact a line bundle. In turn this

implies that Φ(ØY ) = ØX as the unit ØX → Rq∗q
∗ØX is an isomorphism.

The same statement obviously holds for Φ̂ = DΦD as well.

Remark 1.12. It can be useful to know that when Y and X are projective

the equivalences described above commute with pushing down to X. For

example, let us check that g∗Φ = Rf∗. We have g∗Φ = Rf∗Rp∗p
∗. If we

proved that Rp∗ØZ = ØY , then by the projection formula we would be done.

Thankfully, the previous remark together with Remark 1.3 already tells us

that Rp∗ØZ = Ψ(ØX) = ØY .
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12 JOHN CALABRESE

2. The formula for DT invariants

We now impose further restrictions on our spaces.

Situation 2.1. Recall Situation 1.1 and assume in addition X is projective

and of dimension three. Assume moreover X is Calabi-Yau; i.e. ωX
∼= ØX and

H1(X,ØX) = 0. Finally, assume the crepant resolution f : Y → X of the

previous section has relative dimension at most one.

Remark 2.2. We follow the convention where a Deligne-Mumford stack

is projective if its coarse moduli space is. From the assumptions above it

follows that X is of dimension three, projective, Gorenstein with quotient

singularities and with trivial canonical bundle. In turn it follows that Y is

Calabi-Yau of dimension three and that X has rational singularities, and so

Rf∗ØY = ØX [Kov00].

As the functor Φ is more natural from the perspective of the McKay cor-

respondence we shall focus on the zero perversity.

Notation. We will drop the superscript 0 from 0Per(Y/X) =: Per(Y/X).

2.1. Reminder. Let us recall some definitions from the introduction. We

denote by N(Y ) the numerical K-group of coherent sheaves of Y . We remind

ourselves that we can define a bilinear form on K0(Coh(Y )),

χ(E,F ) :=
∑
k

(−1)k dimC ExtkY (E,F ),

and that N(Y ) is obtained by quotienting out its radical. Inside N(Y ) we can

single out F1N(Y ), which is the subgroup generated by sheaves supported

in dimensions at most one. We also define FexcN(Y ) to be the subgroup of

F1N(Y ) spanned by sheaves supported in dimension at most one and with

derived pushforward to X supported in dimension zero (see [Cal11, Section

4] for how this notion behaves well for perverse coherent sheaves).

To Y one can also attach the numerical Chow groups N∗(Y ), which are the

groups of cycles modulo numerical equivalence. We write N≤1(Y ) := N1(Y )⊕
N0(Y ) and recall that N0(Y ) ∼= Z. In [Bri11, Lemma 2.2] it is shown that the

Chern character induces an isomorphism F1N(Y ) ∼= N≤1(Y ) ∼= N1(Y ) ⊕ Z,

which allows us to pass from one group to the other. Using this identification,

FexcN(Y ) can be rewritten as

FexcN(Y ) = {(β, n) ∈ N1(Y )⊕ Z | f∗β = 0}

where f∗ here stands for the proper pushforward on cycles (the subscript exc

is short for exceptional).

For the orbifold X we can also define a numerical K-group N(X). The

functor Φ: D(Y ) → D(X), with inverse Ψ, induces an isomorphism on the
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level of numerical K-groups:

φ : N(Y ) � N(X) : ψ.

The group FmrN(X) is defined to be φ(F1N(Y )), and we recall the diagram

(Δ) from the introduction, which expressed how all the numerical classes on

Y and X match up. Before we may proceed, a technical remark is in order.

Remark 2.3. As mentioned in the introduction, we think of DT invariants

as weighted Euler characteristics of the Hilbert scheme of a given Calabi-Yau

threefold M , where the weight is given by Behrend’s constructible function.

The proof of the flop formula in [Cal11] relies on the technology of motivic

Hall algebras of Joyce. One of the technical points of this approach is that the

Hilbert scheme Hilb(M) has a forgetful morphism σ to the stack of coherent

sheaves M. Thus, on Hilb(M) there are two candidate constructible functions:

the Behrend function νHilb(M) and the pullback μ = σ∗νM of the Behrend

function on M. Fortunately there is a simple relationship between the two,

which unfortunately introduces some signs: namely if ØM � E is a quotient,

with E supported in dimension at most one, then [Bri11, Theorem 3.1]

νHilb(M)(ØM � E) = (−1)χ(E)μ(ØM � E) = (−1)χ(E)νM(E)

where χ(E) = χ(ØM , E) is the Euler characteristic of the sheaf E. Moreover

if f : U → Z is an open immersion, then νU = f∗νZ . This is relevant for the

“partial” invariants.

The DT number of Y of class α ∈ F1N(Y ) is given by

DTY (α) := χtop (HilbY (α), ν) ,

but for convenience, we give a name to the numbers obtained by weighing

with μ as well, namely

DTY (α) := χtop (HilbY (α), μ) = (−1)χ(α)DTY (α).

In the introduction we also mentioned that we package all these numbers into

a generating series

DT(Y ) :=
∑

α∈F1N(Y )

DTY (α)q
α

and similarly for DT0(Y ), DTexc(Y ) and the corresponding underlined ver-

sions. Finally, we also define

DT∨
exc(Y ) :=

∑
(β,n)∈N1(Y )⊕Z

f∗β=0

DTY (−β, n)q(β,n)

and the corresponding DT∨
exc(Y ).
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14 JOHN CALABRESE

Recall now the category Per(Y/X) of perverse coherent sheaves from the

previous section. The structure sheaf ØY belongs to Per(Y/X), and there

is a moduli space P-Hilb(Y/X) parameterising quotients of ØY in Per(Y/X)

[Bri02, Section 6]. This space splits into open and closed components

P-HilbY/X(α), for each numerical class α, parameterising quotients ØY � P ,

with [P ] = α.

We can define a perverse DT number of Y over X of class α as the weighted

Euler characteristic

DTY/X(α) := χtop

(
P-HilbY/X(α), μ

)

where μ is the pullback of the Behrend function of the stack of perverse

coherent sheaves on Y . We also collect these numbers into a generating series

DT(Y/X):=
∑

α∈F1N(Y )

DTY/X(α)qα, DTexc(Y/X) :=
∑

α∈FexcN(Y )

DTY/X(α)qα.

The orbifold side brings no surprises. We once again define DT numbers by

taking weighted Euler characteristics and gather them in a generating series

DTX(α) := χtop (HilbX(α), ν) , DTmr(X) :=
∑

α∈FmrN(X)

DTX(α)q
α,

DT0(X) :=
∑

α∈F0N(X)

DTX(α)q
α.

Remark 2.4. The analogue of Remark 2.3 for X still holds. That is, the

following identity holds:

χtop (HilbX(α), μ) = (−1)χ(α)χtop (HilbX(α), ν)

where μ is the pullback of the Behrend function of the stack of coherent

sheaves on X. To prove this, one can choose an appropriate divisor D on

the coarse space X, and its pullback to X plays the role of H in the proof of

[Bri11, Theorem 3.1]. The affine U can then be chosen to be an étale open in

X, so that [Bri11, Lemma 3.2] can be applied.

Because of this remark, we can define the underlined version of DTmr(X)

and the identity above translates to

DTX(α) = (−1)χ(α) DTX(α).

Remark 2.5. From the previous section we know that the Fourier-Mukai

equivalences Φ and Ψ restrict to an equivalence of abelian categories between

Per(Y/X) and Coh(X). Using Remark 1.11, which tells us that Φ(ØY ) = ØX,

we have an induced isomorphism of Quot functors (or Hilbert schemes), hence

HilbX(α) � P-HilbY/X(ψ(α)).
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Remark 2.6. Before we state the theorem, we point out a technical detail.

In [Bri11] the generating series DT(Y ) is interpreted as belonging to an algebra

C[Δ]Φ (where Δ ⊂ F1N(Y ) is the positive cone of classes [E] with E ∈
Coh(Y )), whose elements consist of formal series

∑
(β,n)∈Δ⊂N1(Y )⊕Z

a(β,n)q
(β,n)

where the a(β,n) are complex coefficients such that, for a fixed β, a(β,n) = 0

for n very negative.

A similar interpretation is given in [Cal11] for the generating series

DT(Y/X), which now belongs to an algebra6 C[pΔ]Λ (where pΔ ⊂ F1N(Y ) is

the positive cone of classes [P ] with P ∈ Per(Y/X)), which is the analogue

of C[Δ]Φ for Per(Y/X). The generating series DT(Y ) can also be seen as an

element of C[pΔ]Λ, and all the identities we write below should be interpreted

as taking place within this algebra.

In light of Remark 2.5 our main theorem is now immediate.

Theorem 2.7. Assume we are working in Situation 2.1. For each α ∈
F1N(Y ) we have

DTY/X(α) = DTX(φ(α)).

In particular, the following formulae hold:

DTmr(X) = DT(Y/X), DT 0(X) = DT exc(Y/X)

after an identification of variables via φ.

As one can plainly see, up to this point we never had to restrict to “partial”

DT invariants or to zero-dimensional sheaves on X. The crepant resolution

conjecture truly boils down to the study of these exotic invariants DT (Y/X).

Corollary 2.8. Assume we are working in Situation 2.1 and recall the

identification of variables from the previous theorem. The following formula

is true:

DT0(X) =
DT∨

exc(Y )DTexc(Y )

DT0(Y )
.(2.9)

Proof. First we notice that we can get rid of the underlines thanks to

Remarks 2.3 and 2.4. From the previous theorem the statement we wish to

prove is equivalent to proving that DTexc(Y/X) is equal to the right hand

side of (2.9) (modulo the underlines). To apply (�) from the introduction,

we need to check that the assumptions of [Cal11, Remark 1.9] are satisfied.

6Here the subscripts Φ and Λ are just notation and stand for entirely parallel constraints.
Also, to be pedantic, in [Cal11] Q was used in place of C. However the latter is obtained
by the former by tensoring with C.
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16 JOHN CALABRESE

This is a simple issue of perversities (p = 0, the one we use, versus p = −1,

the one dominating [Cal11]). The only thing to prove is that the stack of

perverse coherent sheaves is locally isomorphic to the stack of coherent sheaves

(via an exact functor). However, using the Fourier-Mukai equivalence Φ̂, we

have that the stack parameterising objects in 0Per(Y/X) is isomorphic to the

stack parameterising objects in −1Per(Y/X). As Φ̂ is also an exact functor,

all the constructions of [Cal11] go through, and (�) does indeed hold. �
If we knew (��) to be true, then Theorem 2.7 would immediately imply

(C0). Combined with Corollary 2.8 we would derive a proof of (C1) [BCY12,

Conjecture 1].

Nonetheless, an unconditional variant can be proved (C0∂). Let P-Hilb∂ ⊂
P-Hilb denote the open subspace consisting of those epimorphisms ØY → E,

where dim suppE ≤ 1. We then have a corresponding DT series

DT ∂(Y/X) =
∑

α∈F1N(Y )

DT ∂
Y/X(α)qα,

DT ∂
Y/X(α) := χtop

(
P-Hilb∂Y/X(α), μ

)
.

Over X, we let Hilb∂X(α) ⊂ HilbX(α) the image of P-Hilb∂Y/X(α) under Φ.

The associated DT series is of course

DT ∂
mr(X) =

∑
α∈FmrN(X)

DT ∂
X(α)q

α, DT ∂
X(α) := χtop

(
Hilb∂X(α), μ

)
.

Finally, let Hilb∂Y (α) ⊂ HilbY (α) be the subspace of HilbY (α) parameterising

those quotients ØY → Q having perverse cokernel in Coh≤1[1] (see [Cal11,

Remark 3.5]). For the last time, we have the generating series that comes

with this moduli space:

DT ∂(Y ) =
∑

α∈F1N(Y )

DT ∂
Y (α)q

α, DT ∂
Y (α) := χtop

(
Hilb∂Y (α), μ

)
.

Theorem 2.7 specialises to the following.

Theorem 2.10. Assume we are working in Situation 2.1. For each α ∈
F1N(Y ) we have

DT∂
Y/X(α) = DT∂

X(φ(α)).

In particular, the following formula holds (after an identification of variables

via φ):

DT∂
mr(X) = DT∂(Y/X).

Using [Cal11, Theorem 3.30], we have our last formula.
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Corollary 2.11. Assume we are working in Situation 2.1 and recall the

identification of variables using φ. Then

DT ∂
mr(X) =

DT ∂(Y )DT∨
exc(Y )

DT0(Y )
,

DT ∂
mr(X)

DT0(X)
=

DT ∂(Y )

DTexc(Y )
.
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ematics, vol. 276, Birkhäuser Boston, Inc., Boston, MA, 2009. MR2511017
(2010k:14020)

[BCY12] Jim Bryan, Charles Cadman, and Ben Young, The orbifold topological ver-
tex, Adv. Math. 229 (2012), no. 1, 531–595, DOI 10.1016/j.aim.2011.09.008.
MR2854183

[Beh09] Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann.
of Math. (2) 170 (2009), no. 3, 1307–1338, DOI 10.4007/annals.2009.170.1307.
MR2600874 (2011d:14098)

[BG09] Jim Bryan and Amin Gholampour, The quantum McKay correspondence
for polyhedral singularities, Invent. Math. 178 (2009), no. 3, 655–681, DOI
10.1007/s00222-009-0212-8. MR2551767 (2011e:14028)

[BKR01] Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence
as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001),
no. 3, 535–554 (electronic), DOI 10.1090/S0894-0347-01-00368-X. MR1824990
(2002f:14023)

[Bri02] Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3,
613–632, DOI 10.1007/s002220100185. MR1893007 (2003h:14027)

[Bri11] Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer.
Math. Soc. 24 (2011), no. 4, 969–998, DOI 10.1090/S0894-0347-2011-00701-7.
MR2813335 (2012f:14109)

[Cal11] John Calabrese, Donaldson-Thomas invariants and flops, arXiv eprint (2011),

available at http://arxiv.org/abs/1111.1670.
[CT08] Jiun-Cheng Chen and Hsian-Hua Tseng, A note on derived McKay

correspondence, Math. Res. Lett. 15 (2008), no. 3, 435–445, DOI
10.4310/MRL.2008.v15.n3.a4. MR2407221 (2009e:14002)

Licensed to Rice Univ. Prepared on Mon Oct 16 15:02:57 EDT 2017 for download from IP 128.42.167.228.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1862797
http://www.ams.org/mathscinet-getitem?mr=1862797
http://www.ams.org/mathscinet-getitem?mr=2511017
http://www.ams.org/mathscinet-getitem?mr=2511017
http://www.ams.org/mathscinet-getitem?mr=2854183
http://www.ams.org/mathscinet-getitem?mr=2600874
http://www.ams.org/mathscinet-getitem?mr=2600874
http://www.ams.org/mathscinet-getitem?mr=2551767
http://www.ams.org/mathscinet-getitem?mr=2551767
http://www.ams.org/mathscinet-getitem?mr=1824990
http://www.ams.org/mathscinet-getitem?mr=1824990
http://www.ams.org/mathscinet-getitem?mr=1893007
http://www.ams.org/mathscinet-getitem?mr=1893007
http://www.ams.org/mathscinet-getitem?mr=2813335
http://www.ams.org/mathscinet-getitem?mr=2813335
http://arxiv.org/abs/1111.1670
http://www.ams.org/mathscinet-getitem?mr=2407221
http://www.ams.org/mathscinet-getitem?mr=2407221


18 JOHN CALABRESE

[DS12] Will Donovan and Ed Segal, Window shifts, flop equivalences and
Grassmannian twists, Compos. Math. 150 (2014), no. 6, 942–978, DOI
10.1112/S0010437X13007641. MR3223878
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