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Abstract We describe pretty examples of derived equivalences and autoequivalences
of Calabi-Yau threefolds arising from pencils of cubic fourfolds. The cubic fourfolds
are chosen to be special, so they each have an associated K3 surface. Thus a pencil
gives rise to two different Calabi-Yau threefolds: the associated pencil of K3 surfaces,
and the baselocus of the original pencil—the intersection of two cubic fourfolds. They
both have crepant resolutions which are derived equivalent.
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1 Statement of result

We exhibit two pairs of derived equivalent Calabi–Yau threefolds (X,Y). In both
examples, X is a crepant resolution of a complete intersection, while Y is K3-fibred.
In the first example the equivalence is twisted by a Brauer class on Y, but in the
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second example there is no twisting. The first pair both have Betti numbers b2 = 2,
b3 = 126 (and so Euler charcteristic −120); the second pair have Betti numbers
b2 = 2, b3 = 134 and Euler characteristic −128. In this section we state the results;
in Sect. 2 we explain the motivation.

For the first example, we start by describing X. Consider a generic pencil of cubic
fourfolds containing a fixed plane P ⊂ P

5. Let X0 be the baselocus of the pencil—a (3,
3) complete intersection in P

5, smooth except for 12 ordinary double points (ODPs)
on P. It admits a projective Calabi–Yau small resolution X given by blowing up the
plane P:

X := BlP X0.

To describe Y we choose another plane P
2 ⊂ P

5 disjoint from P. For any cubic
C in the pencil, projection from P to P

2 makes BlP C into a quadric fibration over
P
2. As the cubic C varies through the pencil we get a quadric fibration over P2 × P

1,
degenerate along a (6, 4) divisor D with 66 OPDs.

Let Y0 denote the double cover of P2 × P
1 branched over D. This has 66 ODPs

over the ODPs of D, so let

Y → Y0 � P
2 × P

1

denote any small resolution (we show they are all non-Kähler). The quadric fibration
endows Y with a Brauer class α ∈ H2

ét

(
Y,O×

Y

)
.

Theorem There is an equivalence D(X) � D(Y, α).

The second example involves only projective Calabi–Yaus with no twisting. It also
comes from the data of a pencil of cubic fourfolds, this time required to all have an
ODP at a fixed point 0 ∈ P

5. Blowing up their baselocus X0 in the singular point 0
gives a smooth Calabi–Yau threefold

X = Bl0 X0.

The pencil also carries a universal hypersurfaceH ⊂ P
5 × P

1. Projecting from {0} ×
P
1 ⊂ P

5 × P
1 to a disjoint P4 × P

1 gives a birational map

Bl{0}×P1(H) −→ P
4 × P

1.

This exhibits the left hand side as BlY(P4×P
1), where Y is the smooth intersection of

a (2, 1) divisor and a (3, 1) divisor in P4 × P
1. It is therefore a Calabi–Yau threefold.

Theorem There is a derived equivalence D(X) ∼= D(Y).

Nick Addington and Paul Aspinwall pointed out that in this example X and Y are
birational, and so already derived equivalent. Our derived equivalence is very different,
as we explain in Sect. 4, so combined with the birational equivalence we get an exotic
autoequivalence of D(X).
Conventions We work over the field of complex numbers C. By D(X) we mean the
bounded derived category of coherent sheaves on X.
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2 Background

This section is purely motivational, and the reader can safely skip to the two examples
in Sects. 3 and 4. There we prove the results from first principles.

The short version

A very brief summary is that we use the simplest possible case of homological projec-
tive duality (HPD): the close relationship between the derived category of the baselocus
of a pencil of hypersurfaces and the derived category of the universal hypersurface
H → P

1 over the pencil.
We apply this to pencils of special cubic fourfolds, whose derived categories are

very close to those of K3 surfaces [10].
The upshot is a relation between the derived category of the intersection of two

cubic fourfolds, and the derived category of the K3 fibration over P1 associated to the
universal family of cubic fourfolds over the pencil.

Choosing the cubics to be special (so that we can really associate K3 surfaces to
them) makes both sides of the above description singular. We find examples where
this issue can be resolved (crepantly).

The longer version

A smooth hypersurface H ⊂ P
n of degree d < n has derived category

D(H) = 〈AH,OH(d), OH(d + 1), . . . ,OH(n)
〉
, (2.1)

whereOH(d), . . . ,OH(n) is an exceptional collection, andAH—the “interesting part”
of D(H)—is its right orthogonal:

AH := 〈OH(d), . . . ,OH(n)
〉⊥

= {
E ∈ D(H) : RHom

(OH(i),E
) = 0 for i = d, . . . , n

}
.

The category AH is a “fractional Calabi–Yau category” of dimension (n + 1)(1 −
2/d); that is, it has a Serre functor SAH , some power of which is just a shift:

SdAH
∼= [(n + 1)(d − 2)].

In the first case d = 1, the categoryAH is empty: the exceptional collection already
generates D(H), by Beı̆linson’s theorem.

The next case is d = 2, i.e. H is a smooth quadric. Kapranov was the first to show
that AH is a zero dimensional Calabi–Yau category: in fact it is equivalent to the
derived category of 1 or 2 points, generated by its 1 or 2 spinor sheaves when n is
even or odd respectively.

The next case, d = 3, is poorly understood in general (though, for any d there is
a highly non-commutative description in terms of A∞-algebras [4]). One interesting
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example is when n = 5 so that H is a cubic fourfold. In this case AH is CY2, namely
the Serre functor is the shift by two. For special cubic fourfolds, AH is equivalent to
D(K3), for a genuine K3 surface (possibly with a twist by a Brauer class) [10]. For the
generic cubic,AH cannot be the derived category of a variety (for example the rank of
its numerical Grothendieck group is too small). As it is a deformation of some D(K3)
and has the same Hochschild (co)homology, one usually callsAH a non-commutative
K3 surface.

Our first example comes from a combination of the cases (d, n) = (2, 3) and
(d, n) = (3, 5).

2.1 Pencils of cubic fourfolds

Now suppose we have a pencil P1 of cubic fourfolds. Denote by

(2.2)

the universal cubic fourfold over P1: for any t ∈ P
1, the fibreHt is the corresponding

cubic fourfold of the pencil. The total spaceH is a (3, 1) divisor in P5 ×P
1. A family

version of the previous discussion (over the base P
1) gives us a semi-orthogonal

decomposition

D(H) = 〈AH , π∗D(P1)(i, 0) : i = 3, 4, 5
〉

(2.3)

where the “interesting part” AH can be rewritten as

AH = 〈OH(i, j) : i = 3, 4, 5, j = 0, 1〉⊥ .

One verifies thatAH is a CY3-category, i.e. a non-commutative Calabi–Yau threefold.
Using π , we can view AH as a CY2-fibration with base P1, whose fibre at t ∈ P

1 is
the non-commutative K3 surface AHt .

Digression We take a moment to make this notion less vague. The category D(P1)

has a tensor product. Via pullback along π , any object E ∈ D(H) can be ten-
sored with an object of D(P1). We might think of D(H) as being a module
over the commutative algebra D(P1). In fact, this becomes literally true in the
(∞-) category of stable (∞-)categories.

Given a point t ∈ P
1, we have the fibre Ht ⊂ H. As the (derived) pullback

t∗ : D(P1) → D (pt) preserves the tensor product, we can think of it as giving a
homomorphism of algebras in this sophisticated category of stable categories. We can
also pull back D(P1)-modules along t and we have D (pt) ⊗D(P1)D(H) = Perf(Ht ) ⊂
D(Ht ), where the latter is the subcategory of perfect complexes, which coincides with
the whole D(Ht ) when Ht is smooth. Now that all this is in place, let’s go back to
AH.

The decomposition (2.3) is D(P1)-linear, in the sense that tensoring with D(P1)

preserves each component. In other words, any component C has the structure of a
D(P1)-module.
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Derived equivalent Calabi–Yau threefolds… 159

In particular, the module AH can be pulled back along any t ∈ P
1. It is shown in

[12, Prop. 5.1] that D (pt) ⊗D(P1)AH is in fact AHt ∩ Perf(Ht ).
Homological projective duality relates the derived categories of universal hyper-

surfaces over linear systems with the derived categories of their base loci. The base
locus of the pencil is a (3, 3) Calabi–Yau threefold complete intersection X3,3 in P

5,
and by HPD it’s derived equivalent to AH.

Proposition 2.1 D(X3,3) � AH.

Since pencils form the most elementary case of HPD, the equivalence can be proved
directly, at least when H and X3,3 are smooth, using Orlov’s decomposition [14].

Proof The total space of the universal hypersurface (2.2) is just the blow up of P5 in
the baselocus:

BlX3,3 P
5 ∼= H. (2.4)

Using the notation

for the exceptional divisor of (2.4), the equivalence is given by the composition

D(X3,3)
p∗

−→ D(E)
ι∗−→ D(H) −→ AH , (2.5)

where the last arrow is projection [the left adjoint of AH ↪→ D(H)].
In fact, one may start with Orlov’s decomposition

D(H) = 〈O,O(1, 0),O(2, 0),O(3, 0),O(4, 0),O(5, 0), ι∗ p∗D(X3,3)
〉

and mutate away.1 By right mutating the first three terms to the end, thus tensoring
them with K−1

H = O(3, 1), one obtains

〈OH(3, 0),OH(4, 0),OH(5, 0), ι∗ p∗D(X3,3), OH(3, 1),OH(4, 1),OH(5, 1)
〉
.

To project to the right orthogonal of all of these sheaves, we left mutate ι∗ p∗D(X3,3)

past OH(3, 0),OH(4, 0),OH(5, 0). Therefore the composition (2.5) is LOH(3,0)
LOH(4,0)LOH(5,0)ι∗ p∗D(X3,3), giving an isomorphism to

AH = 〈OH(3, 0),OH(4, 0),OH(5, 0),OH(3, 1),OH(4, 1),OH(5, 1)
〉⊥

which is what we needed to conclude. ��
1 We are grateful to A. Kuznetsov for indicating which mutations to make here.
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2.2 Cubic fourfolds containing a plane

Proposition 2.1 says we can see X3,3 as a noncommutative K3 fibration. To bring
things down to earth, we would like to choose an example where the K3 fibration is
commutative.

Examples of cubic fourfolds H for which AH is really the derived category of a
geometric K3 surface are given in [10]. The easiest is to take H to contain a plane.

Write P
5 = P(V ⊕ W) where V,W are copies of C3, and consider a cubic H

containing the plane P(V). We can blow up the plane P(V) and project away from
it onto P(W), producing a P3-bundle BlP(V) P

5 → P(W). Taking the intersection of
a fibre with the preimage of H gives a cubic surface containing P(V); it is therefore
the union of P(V) and a quadric. Intersecting with the proper transform of H instead
removes P(V), so that

BlP(V) H −→ P(W) (2.6)

is a quadric surface fibration over two-dimensional projective space P(W).
We think of this as being a family version, with base P(W), of the d = 2, n = 3

case of equation (2.1). The (interesting part of the) derived category of a smooth fibre
of (2.6) is the derived category of two points. As we move along the base, these two
points vary, describing a double cover S � P(W) branched along the locus of singular
fibres. This locus is a sextic curve and S is a K3 surface.

Thinking of S as a moduli space of spinor sheaves on the fibres of (2.6), its product
with BlP(V) H carries, analytically locally over S, a universal sheaf. On overlaps the
sheaves glue, up to invertible scalars. Since the gluings might not satisfy the cocycle
condition, they define a Brauer class α on S. The universal sheaf then exists as a
p∗α−1-twisted sheaf (where p : BlP(V) H × S → S is the projection); using it as a
Fourier–Mukai kernel produces an embedding D(S, α) → D(BlP(V) H), where the
former is the derived category of α-twisted sheaves. On the other hand,AH embeds in
D(BlP(V) H) by the blow up formula. By performing a series of mutations, Kuznetsov
shows that indeed D(S, α) � AH [10, Theorem 4.3]. Therefore in this case we see the
K3 category arising from the commutative K3 surface S.

If we now start with a whole pencilH of cubics containing P(V), we would like to
have a family version of the previous discussion, over the P1 base of the pencil. Said
differently, we would like to realise commutatively a special case of Proposition 2.1.
There is a hitch, however. The baselocus X3,3 of a generic pencil of cubics containing
the plane P(V) has twelve ODPs. Dually, the universal hypersurfaceH (2.2) is a five-
fold with twelve ODPs as well. For instance, this implies that Orlov’s blow up formula
breaks down. To remedy this, we need to somehow resolve the singularities. This is
why in Sect. 3 we start over, working with the right blow up of P5 from the beginning.

2.3 Cubic fourfolds with an ODP

Let H be a cubic fourfold with a single ODP at 0 ∈ P
5. Projecting to a disjointP4 ⊂ P

5

gives a map
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Bl0 H −→ P
4

which is degree 1 and so birational. It exhibits the left hand side as

Bl0 H ∼= BlS(P
4),

where S is a (2, 3) complete intersection K3 surface in P4. This correspondence gives
a derived equivalence2 [10]

AH ∼= D(S).

So we can play the same trick again, relating the baselocus of a pencil of such cubics
with the associated P1 family of K3 surfaces S. Again the results are singular on both
sides but can be resolved. In Sect. 4 we work in Bl0 P5 from the beginning to avoid
these singularities.

3 First example

Fix two copies V,W of C3 and write P
5 = P(V ⊕ W). Projecting from the plane

P(V) ⊂ P
5 to the plane P(W) gives the following diagram.

The map ρ is a P3-bundle. More precisely, ρ is the projective completion of V(1) over
P(W):

P
(
V(1) ⊕ OP(W)

) ρ−→ P(W). (3.1)

Here V denotes the trivial bundle V⊗COP(W). As the projectivisation of a vector bun-
dle, Z carries a tautological line bundle which we denote by Oρ(−1). A computation
gives

π∗OP5(3)(−E) ∼= Oρ(2) ⊗ ρ∗OP(W)(3) (3.2)

where E ∼= P(V) × P(W) is the exceptional divisor of π . In particular,

ρ∗(π∗OP5(3)(−E)) ∼= ρ∗Oρ(2) ⊗ OP(W)(3)

∼= S2
(
V∗(−1) ⊕ OP(W)

) ⊗ OP(W)(3)

2 The singularity in H means we have to be more careful in defining AH; see [10] for details. We will
avoid this issue in Sect. 4.
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162 J. R. Calabrese, R. P. Thomas

∼= ((
S2V∗)(−2) ⊕ V∗(−1) ⊕ OP(W)

) ⊗ OP(W)(3)

∼= (
S2V∗)(1) ⊕ V∗(2) ⊕ OP(W)(3). (3.3)

Taking global sections yields

(3.4)

using the fact that π∗OP5(−E) = IP(V).

Lemma 3.1 The line bundle π∗OP5(3)(−E) has no baselocus.

Proof This can be deduced from (3.4) as follows. It is clear that the baselocus of
the linear system H0(P5,IP(V)(3)) ⊂ H0(P5,OP5(3)) is the plane P(V). Therefore
the baselocus of π∗OP5(3)(−E) must be contained in the exceptional divisor E ∼=
P(V) × P(W). But π∗OP5(3)(−E)|E ∼= OP(V)(2) � OP(W)(1), which has sections
S2V∗ ⊗W∗ (without baselocus). These are in turn surjected onto by the left hand side
of (3.4). ��
Therefore, by Bertini’s theorem we can pick a pencil

P
1 = 〈s0, s∞〉 ⊂ H0(Z, π∗O(3)(−E)

)

whose baselocus

X := {s0 = 0 = s∞} ⊂ Z (3.5)

is smooth, and over which the universal hypersurface

(3.6)

is also smooth. Since the anticanonical bundle of Z is π∗O(6)(−2E) we see that X is
a Calabi–Yau threefold.

Remark The projection of X to P
5 is also easily seen to be the (3, 3) complete inter-

section X0 of Sect. 1. The point is that X ∩ E is the intersection of two (2, 1) divisors
in P(V)×P(W), which is generically a section over P(V) but which has fibre P1 over
12 points of P(V). In other words it is Bl12 P(V) and the projection to P

5 blows this
back down to P(V).

Using the projective bundle structure (3.1, 3.2) we see that H is an element of the
linear system
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∣
∣Oρ(2) ⊗ ρ∗OP(W)(3) � OP1(1)

∣
∣

on the P3-bundle Z × P
1 ρ×1−→ P(W) × P

1. Since this has degree two on the fibres,H
is a quadric fibration over P(W) × P

1.
Via the isomorphism (3.3) we think ofH as being defined by a section of S2(V∗ ⊕

OP(W)(1))(1, 1). That is, a quadratic form on the fibres of V ⊕ OP(W)(−1), twisted
by OP(W)×P1(1, 1). It is generically of rank 4 on the fibres, but drops to rank ≤ 3 on
the divisor D where its determinant in

(
�4(V∗ ⊕ OP(W)(1)

))⊗2
(4, 4) ∼= OP(W)×P1(6, 4)

vanishes. It further drops to rank 2 at

4
(
c1(E ⊗ N)c2(E ⊗ N) − c3(E ⊗ N)

)

points [7], where E is the bundle V∗ ⊕ OP(W)(1) and N is the Q-line bundle
OP(W)×P1(1/2, 1/2). With some work, this can be computed to be 66. At these 66
points, the divisor D necessarily has an ODP.

We now have all the ingredients in place to cook up our desired equivalence. As
H → P(W) × P

1 is a quadric fibration, there is a corresponding even Clifford alge-
bra sheaf C0 on P(W) × P

1—see [3, Section 1.5] for its definition and see also [3,
Proposition A.1], where it is proved that C0 is isomorphic to B0 of [13, Section 3].
The relative version of Kuznetsov’s HPD for quadrics found in [3] provides the first
step of our desired equivalence.

Lemma 3.2 There is an equivalence

D(X) ∼= D
(
P(W) × P

1,C0
)

(3.7)

where by the latter we mean the bounded derived category of right coherent C0-
modules.

Proof This follows from [3, Theorem 2.19(2)], which fits in the general framework
of relative HPD [3, Theorem 2.16]. To use their notation: the base scheme Y is our
P(W), the vector bundle E is V(1) ⊕ OP(W), the base of the family of quadrics S is
our P(W) × P

1, the base locus X is our X, the total family of quadrics Q is our H,
m = 2 and n = 4.

Our pencil 〈s0, s∞〉 corresponds to a two-dimensional subspace of the global sec-
tions of π∗O(3)(−E), which we identify with the bottom-left corner of (3.4).

To satisfy the assumptions of [3, Theorem 2.16], we need to check that the map

(3.8)

defined by the pencil has rank 2 at every point. (In the notation of [3], L =
OP(W)(−3)⊕2, V = S2(V(1) ⊕ OP(W)).) It is sufficient to show that the composi-
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tion of (3.8) with the projection ρ∗π∗O(3)(−E) → (S2V ∗)(1) to the first summand
of (3.3) has rank 2 at every point.

We see this for generic s0, s∞ as follows. Consider their projections to the first
term S2V∗ ⊗ W∗ of the bottom-left corner of (3.4). They define two elements of
Hom(W,S2V∗) whose images intersect only in 0 (by genericity and the observation
that dim S2V∗ = 2 dimW). That is, for each point of P(W), we get two quadratic
forms on V [twisted by O(1)] which are distinct. This is the required condition. ��

To make the right hand side of the equivalence (more) geometric, we use the work
of [11] (we thank Alexander Kuznetsov for highlighting this paper). If s ∈ P(W)×P

1,
we know what the fibre of H over it looks like:

(1) generically it is a smooth quadric Hs ∼= P
1 × P

1;
(2) over the smooth locus of D, Hs is a quadric cone;
(3) over the ODPs of D, Hs is the union of two planes intersecting in a line.

All the fibres contain lines and we can consider the moduli space parameterising them.
Let F → P(W)×P

1 be relative Fano scheme of lines ofH → P(W)×P
1 (the derived

category of which was studied in [11]). Once again, the fibres of F over P(W) × P
1

are explicit:

(1) if s /∈ D, Fs is the disjoint union of two smooth lines;
(2) for s in the smooth locus of D, Fs is topologically a single smooth conic;
(3) for s a singular point of D, Fs is the union of two planes �+

s , �−
s intersecting at

a point.

Away from the singularities of D we see that F is a P1-bundle over a double cover of
P(W) × P

1. More precisely, let F → Y0 → P(W) × P
1 be the Stein factorisation of

F → P(W) × P
1. The morphism Y0 → P(W) × P

1 is a double cover branched at D,
while F → Y0 is generically a P1-bundle.

Let us now choose a plane �s ∈ {�+
s , �−

s } in each fibre over the singular locus of
D. In [11, Proposition 4.4] it is shown that the flip F′ in all the planes �s factors as a
composition

F ′ → Y → Y0

where Y → Y0 is a small resolution and F′ → Y is a P1-bundle. In Lemma 3.3 we
show that one cannot choose the �s so that Y is a projective variety.

Let α ∈ H2
ét(Y,O×

Y ) be the Brauer class coming from [F′] ∈ H1
ét(Y,PGL2). It is

shown in [11, Lemma 5.7] that there exists an Azumaya algebraA on Y, representing
the class α, such that σ∗A ∼= C0, where σ is the composition Y → Y0 → P(W)×P

1

(recall once again [3, Proposition A.1]). Kuznetsov goes on to show [11, Proof of
Theorem 1.1] that σ ∗ induces an equivalence between the derived categories of A -
modules and C0-modules. As a consequence, we now have our desired equivalence:

D(X) ∼= D
(
P(W) × P

1,C0
) ∼= D(Y,A ) ∼= D(Y, α). (3.9)
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Remark An alternative approach to the equivalence could be realised by mimicking
[1,2]. We can construct the small resolution Y as a moduli space of spinor sheaves on
the fibres of H as follows.

Let U be an analytic open subset of P(W) × P
1, small enough so we can pick a

section sU of the quadric bundle passing through only smooth points of the fibres. We
define Y|U to be the moduli space of lines in the quadric fibres intersecting the section
sU. Generically, the fibre is a smooth quadric P1 × P

1 and there are two lines through
the basepoint. So Y|U → U is a double cover. Over those fibres where the quadric
drops rank by 1, there is only one line, so the double cover branches. Over those fibres
where the quadric drops rank by 2, there is a P

1 of lines. This P1 is what gives the
small resolution Y → Y0.

Over an open set containing a corank-2 quadric we get a fibre which is the union
of two planes. Changing which plane the section goes through flops Y from one small
resolution of Y0 to the other.

The spinor sheaf is then defined to be the ideal sheaf of the line in the quadric fibre.
Over overlaps the section changes and so the line with it, but the ideal sheaf remains
isomorphic away from the corank-2 quadric fibres. Since there are only finitely many
of these fibres, we can choose our cover so that they do not lie on overlaps. With these
choices, the Y|U glue up uniquely, while the spinor sheaves gluemodulo scalars giving
a universal sheaf twisted by a Brauer class (cf. [2]).

Finally, just as in [2] we have the following.

Lemma 3.3 The threefold Y is non-Kähler (and a fortiori non-projective).

Proof We thank Nick Addington for the following argument.
The Brauer class α is represented by the P1-bundle F′ → Y. By [5] we have the

semiorthogonal decomposition

D(F′) ∼= 〈
D(Y),D(Y, α)

〉

∼= 〈
D(Y),D(X)

〉
.

Hence,

dim Heven(F′,Q) = dimHeven(Y,Q) + dimHeven(X,Q). (3.10)

On the other hand, c1(KF′/Y) generates the cohomology of the fibre P1 overQ, so we
can apply the Leray-Hirsch theorem to deduce that

H∗(F′,Q) ∼= H∗(Y,Q) ⊗ H∗(P1,Q)

as vector spaces. In particular, dim Heven(F′,Q) = 2 dimHeven(Y,Q). Combinedwith
(3.10) gives dimHeven(Y,Q) = dimHeven(X,Q) or, equivalently,

b2(Y) = b2(X).
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Now a smooth (3, 3) complete intersection in P
5 has b2 = 1 by the Lefschetz hyper-

plane theorem. Degenerating to X0 with ODPs only changes b3, and passing to the
small resolution X by blowing up the plane adds the defect to b2. Here the defect is
the number of relations in H3 between the vanishing cycles of X0. In this case, there
is only one given by the plane P2. Hence

b2(X) = 2.

Now both Y0 and Y have two independent H2 classes pulled back from P(W) × P
1.

Since b2(Y ) = 2 we see that it has no extra classes; its H2 is pulled back from Y0. In
particular, the exceptional curves of the small resolution are all trivial in (co)homology,
so Y cannot be Kähler. ��

4 Second example

For the second example, we work in the blow up of P5 in a single point 0, with
exceptional divisor e:

(4.1)

We consider divisors in the linear system of 3

K−1/2
P = O(3)(−2e).

These are the proper transforms of cubic fourfolds in P5 with an ODP at 0. Picking a
generic pencil

P
1 ⊂ |O(3)(−2e)|

of such divisors, their baselocus is a smooth Calabi–Yau threefold

X ⊂ P = Bl0 P
5. (4.2)

We use the universal hypersurface H ⊂ P × P
1 to define the dual Calabi–Yau

threefold Y.

Lemma 4.1 There is an isomorphism

H ∼= BlY(P4 × P
1), (4.3)

3 We are suppressing the pullback maps from the notation.
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where Y ⊂ P
4 × P

1 is the Calabi–Yau threefold intersection of a (2, 1) and a (3, 1)
divisor.

Proof Consider the variety of lines in P
5 through the point p. This is a copy of P4,

over which P is therefore a P1-bundle:

P = P(OP4(1) ⊕ OP4)
ρ−→ P

4. (4.4)

Crossing with P
1, we have the composition

(4.5)

which we will show is the claimed blow up (here we mildly abuse notation and write
ρ for ρ × 1).

The divisor H ⊂ P × P
1 is the zero locus of a section SH of the line bundle

O(3)(−2e) � OP1(1). (4.6)

We need to express this in terms of the geometry of the bundle (4.4). Considering P as
the projectivisation of the vector bundleO(1)⊕O → P

4, it carries a tautological line
bundleOρ(−1). Its dual has a canonical section (0, 1) ∈ H0(P4,O(−1) ⊕O) whose
zero locus is the divisor e, so

Oρ(1) ∼= O(e). (4.7)

Considering P as the blow up of P5 in the point 0 ∈ P
5, which is the baselocus of

the lines parameterised by P
4, we also have4

ρ∗O(1) = O(1)(−e). (4.8)

Therefore by (4.6), (4.7) and (4.8),H lies in the linear system of

K−1/2
P×P1

∼= O(3, 1)(−2e) ∼= ρ∗O(3, 1)(e) ∼= ρ∗O(3, 1) ⊗ Oρ(1). (4.9)

This has degree 1 on the P1-fibres of ρ, so each fibre intersects H in either a point or
the whole line.

Therefore ρ|H is a birational map to P
4 × P

1, and it only contracts P1s over the
zero locus of ρ∗sH, which is a section of

ρ∗
(
ρ∗O(3, 1) ⊗ Oρ(1)

) = O(3, 1) ⊗ ρ∗Oρ(1)

= O(3, 1) ⊗ (O(1, 0) ⊕ O)∗ = O(2, 1) ⊕ O(3, 1).
(4.10)

4 To avoid ambiguity in our notation, we do not suppress the pullback map ρ∗ even as we continue to omit
the others.
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This locus is thus a complete intersection of (2, 1) and (3, 1) divisors, as claimed. ��
Theorem 4.2 There is a derived equivalence between X (4.2) and Y (4.3),

D(X) ∼= D(Y).

Proof We again use the fundamental relation

H ∼= BlX (P). (4.11)

By Orlov’s theorem [14] this gives a semi-orthogonal decomposition

D(H) ∼= 〈
D(P),D(X)

〉
, (4.12)

where the first term is embedded by pullback and the second by the functor of pulling
back to the exceptional divisor and then pushing forwards into the blow up (4.11).

The descriptionH ∼= BlY (P4×P
1) of (4.3) gives a similar semi-orthogonal decom-

position

D(H) ∼= 〈
ρ∗D(P4 × P

1),D(Y)
〉
. (4.13)

We will mutate (4.12) into (4.13) to get the equivalence D(X) ∼= D(Y). Our method
is motivated by [10, Section 5], heavily modified. We leave all the elementary sheaf
cohomology calculations to the reader.

We start with the following semi-orthogonal decomposition of D(P),

〈O,O(1),O(2),O(3),O(4),O(5),Oe,Oe(−e),Oe(−2e),Oe(−3e)
〉

obtained from Orlov’s theorem [14] applied to yet another blow up—the original one
(4.1). Right mutating O(3),O(4),O(5) past Oe,Oe(−e) turns this into

〈O,O(1),O(2),Oe,Oe(−e),O(3)(−2e),

O(4)(−2e),O(5)(−2e),Oe(−2e),Oe(−3e)
〉
.

Then we left mutate the last 5 terms to the front of the exceptional collection, thus
tensoring them with KP = O(−6)(4e) to yield

D(P) = 〈O(−3)(2e),O(−2)(2e),O(−1)(2e),Oe(2e),Oe(e),

O,O(1),O(2),Oe,Oe(−e)
〉
.

Substituting this into (4.12) and right mutating the first 5 terms all the way to the
end tensors them with K−1

H = O(3, 1)(−2ê), where ê is the total transform of e ⊂ P
in BlX P. Thus we can write D(H) as

〈O,O(1, 0),O(2, 0),Oê,Oê(−ê),

D(X),O(0, 1),O(1, 1),O(2, 1),Oê(0, 1),Oê(−ê)(0, 1)
〉
.
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Now right mutate D(X) to the end, O(2, 0) past Oê, and O(2, 1) past Oê(0, 1), to
give

〈O,O(1, 0),Oê,O(2, 0)(−ê),Oê(−ê),

O(0, 1),O(1, 1),Oê(0, 1),O(2, 1)(−ê),Oê(−ê)(0, 1), D(X)
〉
.

Next left mutate the 3rd term past the 2nd, the 5th past the 4th, the 8th past the 7th,
and the 10th past the 9th:

〈O,O(1, 0)(−ê),O(1, 0),O(2, 0)(−2ê),O(2, 0)(−ê),

O(0, 1),O(1, 1)(−ê),O(1, 1),O(2, 1)(−2ê),O(2, 1)(−ê), D(X)
〉
.

Observing that the 3rd and 4th terms are orthogonal, and the 8th and 9th, we swap
them to give

〈O,O(1, 0)(−ê),O(2, 0)(−2ê),O(1, 0),O(2, 0)(−ê),

O(0, 1),O(1, 1)(−ê),O(2, 1)(−2ê),O(1, 1),O(2, 1)(−ê), D(X)
〉
.

Similarly the 4th and 5th terms are orthogonal to the 6th, 7th and 8th, so we move
them past and then left mutate D(X) past the 4 terms to its left:

〈O,O(1, 0)(−ê),O(2, 0)(−2ê),O(0, 1),O(1, 1)(−ê),

O(2, 1)(−2ê), D(X),O(1, 0),O(2, 0)(−ê),O(1, 1),O(2, 1)(−ê)
〉
.

Finally, we left mutate the 4 terms to the right of D(X) to the front of the exceptional
collection, thus tensoring them with KH = O(−3,−1)(2ê):

〈O(−2,−1)(2ê),O(−1,−1)(ê),O(−2, 0)(2ê),O(−1, 0)(ê),O,

O(1, 0)(−ê),O(2, 0)(−2ê),O(0, 1),O(1, 1)(−ê),O(2, 1)(−2ê),D(X)
〉
.

Using (4.7) we can write this in terms of sheaves pulled back from P
4 × P

1:

〈
ρ∗O(−2,−1), ρ∗O(−1,−1), ρ∗O(−2, 0), ρ∗O(−1, 0),O,

ρ∗O(1, 0), ρ∗O(2, 0), ρ∗O(0, 1), ρ∗O(1, 1), ρ∗O(2, 1),D(X)
〉
.

We identify this with

〈
ρ∗D(P4 × P

1),D(X)
〉

(4.14)

by using the standard exceptional collection

D(P4 × P
1) = 〈O(−2,−1),O(−1,−1),O(−2, 0),O(−1, 0),O,

O(1, 0),O(2, 0),O(0, 1),O(1, 1),O(2, 1)
〉
.

Comparing (4.14) with (4.13) gives the equivalence D(X) ∼= D(Y). ��
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Nick Addington and Paul Aspinwall pointed out that in this example X and Y are
birational. In fact we have the following. Recall the map ρ : P → P

4 (4.4).

Proposition 4.3 The compositions

X ↪−→ P
ρ−→ P

4

and

Y ↪−→ P
4 × P

1 −→ P
4

projectX andY to the same quintic threefold Q. GenericallyQ has 36 ODPs, in which
case we obtain Y from X by flopping all 36 exceptional P1s.

Proof The key is the isomorphism (4.10). Let

uq0 + tq∞ ∈ H0(OP4×P1(2, 1))

uc0 + tc∞ ∈ H0(OP4×P1(3, 1))

be the corresponding pencils of quadrics and cubics respectively. Here u, t are the
standard sections of OP1(1) giving the homogeneous coordinates of the point [u :
t] ∈ P

1.
Consider the quintic Q ⊂ P

4 defined by the equation

q0c∞ − q∞c0 = 0.

Generically {q0 = 0 = q∞ = c0 = c∞} is 2 · 2 · 3 · 3 = 36 reduced points, which are
then the ODPs of Q.

The blow up of Q in the Weil divisor q0 = 0 = q∞ (or equivalently the blow up in
the Weil divisor c0 = 0 = c∞) gives the small resolution

{uq0 + tq∞ = 0 = uc0 + tc∞} ⊂ P
4 × P

1.

But this is precisely the definition ofY. Flopping all 36 exceptional curves gives instead
the blow up of Q in the Weil divisor q0 = 0 = c0 (or equivalently in q∞ = 0 = c∞).
This is

{Uq0 + Tc0 = 0 = Uq∞ + Tc∞} ⊂ P, (4.15)

where U is the section of Oρ(1) ⊗ ρ∗OP4(−2) vanishing on the section P(OP4) ⊂
P = P(OP4(1) ⊕OP4), and T is the section ofOρ(1) ⊗ ρ∗OP4(−3) vanishing on the
section P(OP4(1)) ⊂ P = P(OP4(1) ⊕ OP4). But (4.15) is precisely the definition of
X. ��

This flop already implies that X and Y have equivalent derived categories, via
an equivalence which takes the structure sheaf Ox of a general point x ∈ X to the
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structure sheaf of the corresponding point of Y. Our equivalence, however, can be
calculated to take Ox to a complex of rank −3 and Euler characteristic −137. Via
the flop equivalence, therefore, we should think of our cubic fourfold constructions as
instead giving an exotic derived autoequivalence of X (or Y).

Remark As the referee pointed out, there is another way to see the birational equiv-
alence of Proposition 4.3. View Q ⊂ P

4 as the degeneracy locus of the map
φ : O⊕2 → O(2) ⊕ O(3) defined by

φ =
(
q0 q∞
c0 c∞

)

.

That is, φ is invertible on P
4\Q, has rank 1 on the smooth locus of Q and is zero on

the 36 ODPs of Q.
The projectivisation of its fibrewise kernel5 lies in P(O⊕2) = P

4 × P
1 and is

the small resolution X. The projectivisation of its fibrewise dual cokernel lies in
P(O(−2) ⊕ O(−3)) = P and gives the small resolution Y.

Remark The observant reader will have noticed that in each of our examples we have
effectively taken homologically dual varieties

A −→ P(V) and B −→ P(V ∗)

and restricted attention to a linear subsystem

P(W⊥) ⊂ P(V∗). (4.16)

Here we have fixed some W ⊂ V, defining subvarieties P(W) ⊂ P(V) and (by
basechange) AP(W) ⊂ A, so that (4.16) is the linear subsystem of hyperplanes van-
ishing on them.

This gives new HP dual varieties

BlAP(W)
(A) −→ P(V/W) and BP(W⊥) −→ P(W⊥),

where the first arrow is induced by the natural projection BlP(W)(P(V)) −→ P(V/W).
Details will appear in [6], but we have been using the simplest form of this duality: its
application to pencils P(W⊥).

In our examples we took A = P
5, V = Sym3

C
6 and W⊥ ⊂ Sym3(C6)∗ the linear

system of cubics vanishing on either a plane or a single point 0 ∈ P
5. The dual B was

in both cases a noncommutative variety which became commutative on basechange
to P(W⊥).

5 Given amap of vector bundles φ : E → F over a base Bwe can define its projectivised kernelP(ker φ) →
B inside P(E)

π→ B to be the zeros of the corresponding section φ ∈ H0(P(E), π∗F ⊗Oπ (1)). Replacing
φ by its adjoint φ∗ gives instead the projectivised dual cokernel.
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