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This thesis contains two main results. The first [Cal12a] is a comparison for-

mula for the Donaldson-Thomas invariants of two (complex, smooth and project-

ive) Calabi-Yau threefolds related by a flop; the second [Cal12b] is a proof of the

projective case of the Crepant Resolution Conjecture for Donaldson-Thomas in-

variants, as stated by Bryan, Cadman and Young.

Both results rely on Bridgeland’s category of perverse coherent sheaves, which

is the heart of a t-structure in the derived category of the given Calabi-Yau variety.

The first formula is a consequence of various identities in an appropriate motivic

Hall algebra followed by an implementation of the integration morphism (using

the technology of Joyce and Song). Our proof of the crepant resolution conjecture

is a quick and elegant application of the first formula in the context of the derived

McKay correspondence of Bridgeland, King and Reid.

The first chapter is introductory and is followed by two chapters of background

material. The last two chapters are devoted to the proofs of the main results.
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1
OV E RV I E W

The starting point of this thesis is the following question:

Is there a relationship between the Donaldson-Thomas invariants of

two birational Calabi-Yau threefolds?

Our aim is to answer this question and to use the methods developed to prove

the Crepant Resolution Conjecture for Donaldson-Thomas invariants of Bryan-

Cadman-Young [BCY12], which can be interpreted as an extension of this ques-

tion where we allow orbifolds.

1.1 I N T RO D U C T I O N

In the past years much attention has been devoted to the study of curve-counting

invariants, such as Gromov-Witten and Donaldson-Thomas (DT) invariants. Our

focus is on Calabi-Yau threefolds which, from both a mathematical and physical

perspective, is a case of particular interest. One of the nice features of studying

the DT invariants of such varieties is that one can rely on Behrend’s microlocal

function [Beh09], which in turn makes the use of Hall algebras possible.

The philosophy behind this approach is that (a non-trivial variant of) the Euler

characteristic is the correct substitute for counting, even when a space is no longer

zero-dimensional. Curve-counting theories are usually defined by finding a suit-

able (compact) moduli space, equipping it with an obstruction theory, which in

turn produces a virtual fundamental class and integrating this class to obtain a

1



1.1 I N T RO D U C T I O N 2

number, the “virtual count.” If the moduli space in question consisted of a finite

number of (reduced) points, then this count should coincide with the cardinality

of the space, or in other words with its Euler characteristic. We should point out

that we shall only concern ourselves with Donaldson-Thomas theory as a curve-

counting theory, in the spirit of [Mau+06].

In [Beh09], Behrend found a way to attach to any finite type scheme M a con-

structible function νM. The topological Euler characteristic of M can then be

weighted by νM as follows

χB(M) :=
∑

k

k ·χtop

�

ν−1
M (k)

�

.

Behrend also proved that when M comes equipped with a symmetric obstruction

theory (as is the case in DT theory) the virtual count coincides with the weighted

Euler characteristic of M.

The definition of the DT invariants becomes now quite appealing. Let Y be a

Calabi-Yau1 threefold and fix a numerical type α (for example a Chern character).

If HilbY(α) denotes the Hilbert scheme of Y parameterising subschemes whose

structure sheaf is of class α, then the DT number of class α of Y is defined as

DTY(α) := χB (HilbY(α)) .

We will always view Hilb as a Quot functor, parameterising quotients OY�Q of

the structure sheaf OY. The parameter α then will indicate either the class of Q

in the numerical Grothendieck group of Y or the Chern character of Q. Let us

expand briefly on this point.

The Grothendieck group K0(Y) of Y is defined as the free abelian group over

isomorphism classes of coherent sheaves on Y modulo the relations given by short

1 For us, this means trivial canonical bundle and torsion fundamental group.
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exact sequences. The numerical Grothendieck group N(Y) of Y is then defined

as the quotient of K0(Y) modulo the kernel of the Chern character map. Inside

these Grothendieck groups, there are filtrations indexed by the dimension of the

support. Concretely, we define Fi N(Y) < N(Y) to be the subgroup spanned

by those sheaves whose support is of dimension at most i . As we wish to count

curves, we are particularly interested in F1N(Y), although the group F0N(Y) will

also play a small role.

On the other hand, we also have the numerical Chow group N1(Y), which is

defined to be the quotient of the Chow group A1(Y) where we identify two curve

classes if they produce the same numbers when intersected with any divisor class.

Finally, we can identify N1(Y)⊕Z with F1N(Y) using the Chern character (see

for example [Bri11, Lemma 2.2]).

It is customary to package all the DT numbers into a generating series

DT(Y) :=
∑

α∈F1N(Y)

DTY(α)qα

where q is a formal variable. Using the identification of F1N(Y) with N1⊕Z, we

can alternatively write

DT(Y) =
∑

β∈N1(Y)
n∈Z

DTX(β, n)q (β,n).

1.2 F L O P F O R M U L A

An interesting question in Donaldson-Thomas theory is whether there exists a

relationship between the DT numbers of two birational (smooth and projective)

Calabi-Yau threefolds. As Calabi-Yau varieties are minimal models, any birational
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map between them can be broken down into a sequence of flops [Kaw08]. Hence,

in principle, it suffices to understand what happens in this latter case.

In its simplest form, a flop is a birational morphism fitting in a diagram

Y Y+

X

f f +

where f (respectively f +) is birational and contracts trees of rational curves to

points. In this setting it is possible to write down an explicit formula relating the

generating series for the DT invariants of both Y and Y+, as we now explain.

With the flopping contraction f : Y→ X one can also associate the DT series

of curves contracted by f , that is

DTexc(Y) :=
∑

β,n
f∗β=0

DTY(β, n)q (β,n)

where the subscript exc stands for exceptional. If we wish to index DTexc(Y) using

the Grothendieck group, we need to introduce the subgroup FexcN(Y)< F1N(Y),

spanned by sheaves whose support is contracted to a point by f .

For a pair of Calabi-Yau threefolds Y,Y+ related by a flop we prove the follow-

ing result.

4.9.4 THEOREM (continuing from p. 93) – If we define the series

DT∨exc(Y) :=
∑

β,n
f∗β=0

DTY(−β, n)q (β,n)



1.2 F L O P F O R M U L A 5

then the following formula2 holds:

DT∨exc(Y) ·DT(Y) = DT∨exc(Y
+) ·DT(Y+) (Æ)

where we identify the formal variables q (β,n) via the flop.

The key ingredient here is Bridgeland’s derived equivalence between Y and Y+

[Bri02], which we denote by Φ. Inside the derived category D(Y) of Y there

is a t-structure whose heart Per(Y/X) is called the category of perverse coherent

sheaves.3 This category is intimately related to the geometry of the flop. In fact,

one can construct Y+ as a moduli space of point-like objects in Per(Y/X). If one

defines Per(Y+/X) to be the category of perverse coherent sheaves for Y+, then

Φ restricts to an equivalence of abelian categories Per(Y+/X) ∼= Per(Y/X). This

fact can be exploited to compare DT invariants on both sides of the flop and we

explain now how.

It turns out that the structure sheaf of Y is a perverse coherent sheaf, OY ∈

Per(Y/X). One can then construct a moduli space P-Hilb(Y/X) of quotients

(in the abelian category Per(Y/X)) of OY. If again we fix a numerical class α

in F1N(Y), it is legitimate to define a perverse DT number DTY/X(α) as the

weighted topological Euler characteristic of the moduli space P-HilbY/X(α) para-

meterising perverse quotients of OY of class α.4

DTY/X(α) := χB
�

P-HilbY/X(α)
�

2 The rigorous meaning of which is explained in Remark 4.8.2.
3 As a matter of fact there are different versions of this category, but we shall momentarily ignore

this. It shall be made clear in the following chapters.
4 This definition is slightly imprecise, as we are sweeping under the carpet a few sign issues. This

will be fully explained in Section 4.8.
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We formally write down a generating series for these perverse DT numbers.

DT(Y/X) :=
∑

β,n

DTY/X(β, n)q (β,n)

From the discussion so far it’s not clear how DT(Y/X) is related to ordinary DT

numbers. However, if we define analogously DT(Y+/X) on Y+ (and once we

know that Φ(OY+) = OX) it follows immediately that DT(Y+/X) matches up

with DT(Y/X) under the equivalence Φ.

To complete the picture, we will prove that DT(Y/X) is (almost) equal to the

left hand side of equation (Æ). To do this, we will use the incarnation of mo-

tivic Hall algebras found in [Bri12], but adapted to the category Per(Y/X) (see

also [KS10; Joy11]). Perverse coherent sheaves are complexes E ∈ Per(Y/X) con-

centrated in degrees [−1,0]. Moreover, H−1(E)[1] and H0(E) are also perverse

coherent, so any E sits in an exact sequence

H−1(E)[1] ,→ E�H0(E)

of perverse coherent sheaves. The Hall algebra is designed to encode precisely

this kind of information. Given an epimorphism of perverse coherent sheaves

OY� E we obtain a surjection of sheaves OY→ E→H0(E). In a nutshell, these

latter surjections know about the ordinary DT invariants of Y, while H−1(E) is

relevant for DT∨exc(Y).

We should mention that Yukinobu Toda has given a different approach to the

same problem [Tod09], using Van den Bergh’s non-commutative resolution of X

[Ber04] and wall-crossing techniques. Our identity (Æ) is related to [Tod09, The-

orem 5.8] via [Tod09, Theorem 5.6] (with slightly different notation). Strictly

speaking, Toda’s result requires extra assumptions and applies only to the na-
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ive counting invariants (defined using the ordinary, unweighted, Euler charac-

teristic) and not to DT invariants, as the proof relies on a yet unproved (but

expected) result regarding the local structure of the moduli stack of the objects

of the derived category [Tod09, Remark 2.32]. On the other hand Toda is able

to prove an additional identity for flops [Tod09, Theorem 1.3 (13)], mainly that

DTexc(Y) = DT∨exc(Y
+), which we were not able to duplicate using our tech-

niques.

1.3 C R E PA N T R E S O LU T I O N C O N J E C T U R E

The second problem we tackle in this thesis is the Crepant Resolution Conjec-

ture for Donaldson-Thomas invariants, as stated in [BCY12, Conjectures 1 and

2]. This conjecture is concerned with understanding the relationship between the

DT invariants of a three-dimensional Calabi-Yau orbifold X, satisfying the hard

Lefschetz condition, and the DT invariants of a crepant resolution Y → X of

its coarse moduli space X. Concretely, we prove a comparison formula (ÆÆ)

for the DT generating series of X and Y. The proof employs a derived equival-

ence between the two (worked out in [CT08]), which is a “global” version of

the McKay correspondence of Bridgeland-King-Reid [BKR01]. We prove that the

image of the heart Coh(X) under this equivalence is Bridgeland’s category of per-

verse coherent sheaves Per(Y/X).

Let X be a smooth and projective Calabi-Yau orbifold of dimension three and

let X be its coarse moduli space. By [BKR01; CT08] there is a crepant resolution

Y→X of X given by an appropriate Hilbert scheme of points of X.
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Y X

X

f g

The global McKay correspondence tells us that, moreover, Y and X are derived

equivalent via Fourier-Mukai transforms

Φ : D(Y)� D(X) : Ψ

which automatically induce an isomorphism between the numerical Grothendieck

groups.

We also assume that the fibres of f are at most one-dimensional.5 We denote by

FmrN(X) the image of F1N(Y) via Φ and define6

DTmr(X) :=
∑

α∈FmrN(X)

DTX(α)qα

where the DT number of class α for X is defined in the same way, by taking the

weighted Euler characteristic of the Hilbert scheme parameterising quotients of

OX of class α. The main formula we prove (Corollary 5.2.5) is

DTmr(X) =
DT∨exc(Y)DT(Y)

DT0(Y)
(ÆÆ)

where DT∨exc is defined as in the previous section and

DT0(Y) :=
∑

n∈F0N(Y)

DTY(n)qn

5 By [BG09, Lemma 24], a case-by-case analysis shows that this condition is equivalent to requesting
that X satisfy the hard Lefschetz condition.

6 The subscript mr stands for multi-regular, see [BCY12].
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is the contribution to the DT series given by points. Notice that in (ÆÆ) we

have implicitly identified FmrN(X) with F1N(Y) via Ψ.

To relate the above formula with Conjectures 1 and 2 in [BCY12] we need

two more objects: the subgroup F0N(X) of the numerical K-group of X spanned

by sheaves supported in dimension zero and the subgroup FexcN(Y) ⊂ F1N(Y)

spanned by sheaves whose support is contracted to a point by f . Notice that

FexcN(Y) is the image of F0N(X) via Ψ and FexcN(Y) is also the image (via the

Chern character) of classes (β, n) such that f∗β = 0. Using this observation we

obtain (Corollary 5.2.7) that

DT0(X) =
DTexc(Y)DT∨exc(Y)

DT0(Y)
(ÆÆÆ)

where

DTexc(Y) =
∑

α∈FexcN(Y)

DTY(α)qα =
∑

(β,n)∈N1(Y)⊕Z

f∗β=0

DTY(β, n)q (β,n).

The formula (ÆÆÆ) relates to [BCY12, Conjecture 2] using [Bri11, Theorem

1.1 (b)]. Plugging (ÆÆÆ) in (ÆÆ) we obtain

DTmr(X)

DT0(X)
=

DT(Y)

DTexc(Y)

which is [BCY12, Conjecture 1].

The key result is identifying the image (via Ψ) of Coh(X) inside D(Y). It turns

out that Ψ(Coh(X)) is none other than Bridgeland’s heart of perverse coherent

sheaves Per(Y/X). We can improve on our previous discussion about the per-



1.3 C R E PA N T R E S O LU T I O N C O N J E C T U R E 10

verse DT series DT(Y/X) by saying explicitly what DT(Y/X) looks like, via the

following formula.

DT(Y/X) =
DT∨exc(Y)DT(Y)

DT0(Y)
. (1.3.1)

The Fourier-Mukai transform Ψ not only identifies Coh(X) with Per(Y/X) but

also the corresponding Hilbert schemes, so that we obtain

DTmr(X) = DT(Y/X)

which implies (ÆÆ).

After the appearance of the first version of [Cal12b], David Steinberg has made

available another possible strategy for proving the crepant resolution conjecture

[Ste12]. His approach is quite interesting and proceeds via relative stable pairs. The

idea is that given a morphism (such as the contraction f : Y→X), there is a relat-

ive version of the stable pairs of Pandharipande and Thomas and a corresponding

DT/PT correspondence holds:

f -PT =
DT

DTexc

where again exc stands for the numerical classes of curves contracted by f . When

f is the identity, one reduces to ordinary stable pairs and the ordinary DT/PT cor-

respondence (in this context DTexc = DT0). In fact, the proof is similar in spirit

to the one given by Bridgeland [Bri11]. The hope would then be that the BKR

equivalence sends f -stable pairs to stable pairs on the orbifold. Using an orbifold

DT/PT correspondence (which has been announced by Arend Bayer), one would



1.3 C R E PA N T R E S O LU T I O N C O N J E C T U R E 11

then conclude. Unfortunately it seems this is not case, and it looks as though the

problem may be traced back to t-structures. Let us elaborate somewhat.7

Generalising stable pairs, Steinberg defines a “torsion pair” (T•,Q) on Coh(Y),

whose “tilt” D is home to the stable pairs. The category T• is defined as those

sheaves T whose pushdown Rf∗T is a skyscraper sheaf. The structure sheaf OY

belongs to D and epimorphisms with source OY are by definition the relative

stable pairs. The category T• is contained in the larger T, consisting of sheaves T

whose pushdown Rf∗T is a sheaf (cfr. page 24). This latter category appears in our

proof of the crepant resolution conjecture, as it fits in a torsion pair (T,F), whose

tilt is Per(Y/X), the category of perverse coherent sheaves (with zero perversity).

Hence we obtain a sort of trisection of Coh(Y), given by (T•,U,F), where

U is both right orthogonal to T• and left orthogonal to F. In turn, general

considerations imply the existence of a “torsion pair” on Per(Y/X) given by

(Per•(Y/X),U), where Per•(Y/X) consists of perverse coherent sheaves whose

pushdown to Y is a skyscraper sheaf. It turns out that the “tilt” of Per(Y/X) along

this torsion pair is none other than Steinberg’s category shifted by one D[1].

This seems promising, as under the BKR equivalence Theorem 5.1.4 implies

that Per•(Y/X) is sent to Coh•(X), consisting of coherent sheaves whose push-

down to X is a skyscraper. The first problem arises as Coh•(X) needn’t be equal to

Coh0(X) (sheaves with zero-dimensional support), and so a direct application of

the DT/PT correspondence on X is not possible. The second issue is that, while

F≤1[1] lies in Per•(Y/X), the full F[1] need not. Finally (and equally problematic-

ally), the category T• is not closed under quotients in Coh(Y), and thus cannot be

the torsion part of a torsion pair (hence the quotes appearing above).8 A solution

7 Although not strictly necessary, the following discussion more or less makes the unfair assumption
that the reader is already familiar with our proof of the formula for flops (which is summarised in
Section 4.1), Theorem 5.1.4 and the statements of the results contained in Section 5.2.

8 David Steinberg points this issue out in [Ste12], in fact his proof avoids the language of t-structures
entirely.
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suggested by Bryan and Steinberg is to work in a subcategory of Coh(Y) contain-

ing Coh≤1(Y) (sheaves supported on at most curves) and OY, where T• is closed

under quotients. Notwithstanding, passing to a subcategory might destroy the

compatibility between Per(Y/X) and the corresponding category D. At present,

the details have yet to be fleshed out.

1.4 C O N V E N T I O N S

In the sequel we shall always work over the field of complex numbers C. All

schemes (and stacks) we consider will be locally of finite type over C. For a variety

X, we denote by D(X) the bounded derived category of coherent sheaves (or equi-

valently of complexes with coherent cohomology). When needed, for a scheme

X, we will denote by D(OX) the unbounded derived category of (Zariski) OX-

modules. Given a complex E ∈ D(OX) we will denote by Hi (E) ∈ OX−Mod the

i -th cohomology sheaf, while Hi (X,E) will denote the i -th (hyper-)cohomology

group (which by our assumptions is always automatically endowed with the struc-

ture of a complex vector space). Given a fibre product XT = T×S X and a com-

plex E ∈ D(OX), we denote by E|LXT
the derived pullback Lu∗E ∈ D(OXT

), where

u : XT→X. Plainly, all we’ve just written is valid unless we state otherwise.



2
B AC KG RO U N D

In this chapter we collect some background material to be used in the remainder

of the thesis. The first section is a very sketchy introduction to Donaldson-Thomas

theory, the second is a brief overview of the classical minimal model programme

and the third is a reminder on perverse coherent sheaves.

2.1 D O N A L D S O N -T H O M A S I N VA R I A N T S

In this section we attempt to give a concise (and ahistorical) account of the ideas

surrounding (a small part of) Donaldson-Thomas theory. An ordinary day in the

life of a (virtual) enumerative geometer can be summarised as follows:

• he wakes up wishing to count certain geometric objects,

• for this purpose he cooks up a moduli space parameterising those objects

(or a compactification thereof),

• the study of the deformation theory of that moduli space produces a so-

called perfect obstruction theory,

• using the technology of Behrend and Fantechi [BF97], one obtains a virtual

class, which can be integrated to obtain numbers (the virtual count).

Let us somewhat elaborate.1

1 The following discussion is largely taken from [PT11], which is recommended reading.

13
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Assume we’ve managed to construct the relevant moduli space M . Assume

moreover thatM sits inside a smooth ambient spaceA , and that on this ambient

space we have a vector bundle E and a section s ∈ Γ(A ,E), such thatM is the

zero-locus of that section Z(s). As locally M is cut out by rkE equations, its

dimension will be at least dimA − rkE.

If the section s is transverse, then dimM = dimA − rkE,M is smooth and

its fundamental class coincides with the Euler class of the bundle E. When s

fails to be transverse, the virtual machinery comes to the rescue, allowing us to

pretend transversality to hold. For example, even in the non-transverse case we

can speak of the expected (or virtual) dimension of M , which we define to be

vdimM := dimA − rkE.

A second scenario we want to consider is when s is not transverse but factors

as a transverse section s ′ of a sub-bundle E′ ⊂ E. Our moduli space is then the

zero locus of s ′, and is thus of dimension dimA − rkE′ = vdimM + rkE/E′.

If we assume the bundle to split E = E′⊕E/E′, we can write the section s as

(s ′, 0). If we restrict E/E′ toM and if we can perturb the zero-section of E/E′

to a transverse section ε, then we can find a space Z(ε) ⊂ Z(M ), of dimension

dimM − rkE/E′ = vdimM . Although in this setting we had the bundle E′

to work with, the idea of virtual classes is that we should always try and find a

class of the expected dimension, which was defined in terms of the original bundle

E. It follows therefore that the natural candidate for the virtual class of M is

the fundamental class of Z(ε), or in other words the Euler class of E/E′. When

the bundle E does not split one can use the excess intersection theory of Fulton-

MacPherson.
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The point of this warm-up discussion is that an obstruction theory provides

this description of our moduli space M at an infinitesimal level. In the setting

above, at a point x ∈M , we have an exact sequence

0→TxM →TxA → Ex →Obx → 0

where Ob stands for obstruction and Obx is the fibre of E/E′. Notice that the

virtual dimension ofM is given by the difference of the dimensions of TxM and

Obx . A perfect obstruction theory is a global (taken now in the sheafy sense)

version of the above exact sequence. As in algebraic geometry differentials are

more natural than tangents (especially in non-smooth cases) one should really take

duals.

Governing the deformation theory of the moduli space M is the cotangent

complex LM ofM . This complex is (in an appropriate sense) the result of deriv-

ing Kähler differentials, and one always has H0(LM ) = ΩM . A perfect obstruction

theory onM is the datum of a perfect complex E, concentrated in degrees minus

one and zero, together with a morphism E→ LM , which is an isomorphism on

H0 and a surjection on H−1.

In this thesis we are concerned with Donaldson-Thomas (DT) theory as a curve-

counting theory, very much in the spirit of [Mau+06]. The relevant moduli space

is then the Hilbert scheme of points and curves (on a Calabi-Yau threefold Y), or

in other words the space parameterising subschemes of dimension at most one.

The datum of an obstruction theory, however, is not intrinsic to the moduli space.

In fact, when the study of the deformation theory of Hilb(Y), leads to the deform-

ation space Hom(IZ,OZ) (for a closed point corresponding to a subscheme Z⊂Y)

and obstruction space Ext1(IZ,OZ). Due to the presence of higher Ext groups this

approach does not lead to an obstruction theory. Thomas’s idea was to view the
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Hilbert scheme as a moduli space of torsion-free sheaves with fixed determinant

[Tho00].

IfM is now the Hilbert scheme, viewed now as a moduli space of torsion-free

sheaves with fixed determinant, Thomas showed the existence of a perfect obstruc-

tion theory. The deformation and obstruction spaces turn out to be Ext1(IZ, IZ)0,Ext2(IZ, IZ)0,

where the zero subscript stands the kernel of the trace map RHom(IZ, IZ) →

RΓ(Y,OY). By Serre duality there aren’t any other obstruction spaces and so we

do get an obstruction theory. Notice that the virtual dimension is given by the

difference of the dimensions of the traceless Ext groups. By using Riemann-Roch

and the Calabi-Yau condition on Y we see that the virtual dimension is zero. This

implies that the we can take the degree of the virtual fundamental class to obtain

a number, the DT number corresponding to the class of IZ.

The DT obstruction theory has an extra property, that of being symmetric, that

is there exists an isomorphism of E with E∨[1] [BF08, Lemma 1.22]. This extra

property was exploited by Behrend [Beh09], who proved that any space equipped

with a symmetric perfect obstruction theory can locally be expressed as the crit-

ical locus of a regular function on a smooth ambient space. Using topological

techniques, Behrend was able to show that the DT virtual count can be expressed

as a weighted topological Euler characteristic of the Hilbert scheme.

To be a little more concrete, Behrend associated to any finite type scheme M a

constructible function νM, which is commonly called the Behrend function of M.

The weighted Euler characteristic of M is then defined to be

∑

k

kχtop

�

ν−1(k)
�

.

When M is smooth of dimension d , νM is the constant function (−1)d . If f : M→

N is any morphism, we can precompose νN with f to obtain a new constructible
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function f ∗νN on M. When f is smooth of relative dimension d then f ∗νN =

(−1)d νM. When M is the critical locus of a regular function on a smooth ambient

space A , then νM(x) = (−1)dimA (1−χtop(Fx)), where Fx is the Milnor fibre,

that is the intersection of a nearby fibre of f with a small ball inA centred at x.

The upshot of Behrend’s result is that DT numbers depend only on the mod-

uli space, and not on the extra datum of the obstruction theory. Our approach

to comparing DT series uses this fact in a crucial and essential fashion. On one

hand, the idea is that if two moduli spaces are isomorphic then their weighted

Euler characteristics coincide (as happens, for example, for our perverse Hilbert

schemes). On the other, the work of this thesis is based on the motivic Hall algeb-

ras of Joyce and Song, especially the integration morphism, which is a souped-up

version of taking weighted Euler characteristics.

2.2 B I R AT I O N A L G E O M E T RY

The problem of classifying smooth and projective algebraic varieties up to bira-

tional equivalence is of unmistakable importance in algebraic geometry. Historic-

ally, it has played a prominent role since the very beginning of the italian school.

In Miles Reid’s words [Rei88]

“The ‘meat’ of the varieties [...] is the same, although they may differ

a bit around the edges.”

The minimal model programme (MMP) aims to isolate special (minimal) repres-

entatives in each birational class. The proofs for the statements claimed in this

section can be found, for example, in [KM98].
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Surfaces

One way to motivate the MMP is to start from Castelnuovo’s theorem for sur-

faces.2 Let S be a smooth surface and C a curve inside it. We call C a (−1)-curve

if it is rational and has self-intersection C ·C = −1. Castelnuovo’s theorem as-

serts that given a (−1)-curve C in S one can find another smooth surface S1 and a

birational morphism S→ S1 contracting C to a point, whose exceptional locus is

given by C.

One can then ask whether S1 has any (−1)-curves which can then be contracted.

Contracting (−1)-curves is controlled by a discrete parameter, the Picard number

of S. Every time we contract a curve, the Picard number decreases by one, so

iterated applications of Castelnuovo’s theorem must come to a halt. Hence, if we

start with a surface S we can keep applying Castelnuovo’s theorem, ending with

another surface S′, with no (−1)-curves. We think of S′ as being a minimal model

for the birational class of S.

This discussion was very special to dimension two, as curves were also divisors.

To generalise this picture to higher dimensions we start by noticing that the pres-

ence of a (−1)-curve C in S implies that the canonical class KS is not nef,3 as

KS ·C =−1 (this is a consequence of the adjunction formula). In fact, one defines

a smooth variety to be minimal if the canonical class is nef. Notice that Calabi-Yau

varieties are automatically minimal.

Going back to surfaces, one might ask if the absence of (−1)-curves implies

minimality. This is not the case, unless one excludes rational and uniruled surfaces.

One has the following theorem.

2 In dimension one, two smooth curves are birational if and only if they are isomorphic, so the
MMP does not have much to say in that case.

3 The acronym nef stands for numerically effective. A divisor class D is nef if its intersection with
any effective curve class C is greater or equal to zero: D ·C≥ 0.
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2.2.1 THEOREM – Let S be a smooth surface. There exists a birational morphism

S→T, given by iterated contractions of (−1)-curves, such that:

• KT is nef (i.e. T is minimal) or

• T is isomorphic to P2 or

• there exists a morphism T→ U, such that U is a smooth curve and T is a

minimal ruled surface over U.

The idea is that, given a smooth surface, we first apply Castelnuovo’s theorem

as many times as we can and then end up with three possibilities: S′ is minimal, S′

is P2 or S′ is ruled over a curve, which reduces the problem of understanding the

geometry of our variety to one dimension less.

It is important to mention that, in the case where this process terminates with

a minimal model, the surface T is unique. In the other two cases one must simply

live with the fact that the original surface did not admit a minimal model.

General Varieties

We would like to have a similar procedure for higher dimensional varieties. The

goal would be to start with a variety and perform a series of contractions termin-

ating with a minimal variety (which we recall means that the canonical divisor is

nef). To this end, we recall the definition of the effective cone.

On a variety X one has a well-defined notion of intersection between a curve

and a Cartier divisor, hence one can form the group N1(X) of 1-cycles modulo

numerical equivalence, viz. two curves lie in the same class if and only if their

intersection numbers with all Cartier divisors coincide. We denote N1(X)R =

N1(X)⊗R, and inside it we single out the cone of effective curves NE(X) given by
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sums
∑

i ai [Ci ], where Ci is a curve in X and ai > 0. We are interested in the clos-

ure (for the Euclidean topology) of NE(X) in N1(X)R, which is unsurprisingly

denoted by NE(X).

Two crucial theorems in the minimal model programme are the cone theorem

and the contraction theorem. Inside NE(X) there is a subspace given by those

classes α such that KX ·α≥ 0. The cone theorem asserts that there exists an at most

countable collection of rational curves Li , with a bound on their intersection

numbers

0<−KX ·Li ≤ 2dimX

and such that

NE(X) = NE(X)KX≥0 +
∑

i

R≥0[Li ].

Furthermore, if we call a ray spanned by [Li ] extremal, the collection of all rays

R≥0[Li ] is locally discrete. Notice that for a Calabi-Yau, the set of the Li is empty.

The contraction theorem (often stated as part of the cone theorem) says that, if

we pick an extremal ray [L] in NE(X), there exists a unique morphismφ : X→Y,

such that an irreducible curve C is contracted to a point if and only if [C] ∈R≥0[L].

The hope would now be to apply over and over the contraction theorem to end

up with a minimal model.

One scenario which might occur is that dimY< dimX. In this case X is a Fano

fibration and one reduces to the study of lower dimensional varieties. Such an X

does not admit a minimal model. Notice that for surfaces, this is the case for both

when X is uniruled (and Y is a curve) and when X is P2 (where Y is a point).

Another thing which might happen is that Y is not smooth. However, this

can be circumvented by allowing so-called terminal Q-factorial singularities. Yet
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another problem arises, we still haven’t found a reason why this process should

terminate. As the morphism φ is designed to contract all curves with correspond-

ing class lying in a given ray of N1(X)R it might very well happen that it contracts

divisors. In this case, once again the Picard number drops, so we find a discrete

invariant ensuring that the process ends.

Unfortunately though, the contraction φ might be small, i.e. with exceptional

locus of codimension at least two. For the resulting variety Y there isn’t a naive

way to make sense of intersection numbers with KY as, if C is a curve contracted

by φ,

0>KX · [C] =φ∗KX · [C] = KY ·φ∗[C] = 0

which is absurd. To solve this problem, one must do a flip, which we define below.

Given a small contraction

φ : X→Y

with Q-Cartier and φ-ample anti-canonical divisor KX, another variety W to-

gether with a small contraction ψ : W→ Y is called a flip of φ if KW is Q-Cartier

and ψ-ample.

X W

Y

φ ψ

The existence of flips has recently been established in all dimensions [Bir+10], and

for a fixed contraction its flip is unique as it is given by Proj
⊕

n≥0φ∗OX(nm0KX),

where m0 is a positive integer such that m0KX is Cartier.

Hence, we can summarise the MMP as follows:

• start with a variety X,
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• if X is minimal we are done, if not

• perform a contraction of an extremal ray,

• if φ is a divisorial contraction return to the beginning,

• if φ is a Fano fibration stop,

• if φ is a small contraction, perform a flip and start over.

The final fact needed to ensure that this algorithm actually terminates, is that we

only need perform a finite number of flips. This question is only meaningful in

dimension ≥ 3 and was settled for threefolds in the nineties [Kaw92].

The minimal models we obtain through running the MMP might however

be quite different from one another. Fortunately, there is a close relationship

between them, in that minimal models are related by finite chains of flops [Kaw08].

A flop is just like a flip, but where we require the canonical classes KX (respectively

KW) to be numerically φ-trivial (respectively ψ-trivial).

The case of most interest for the purpose of this thesis is the case of Calabi-

Yau threefolds. As mentioned, a Calabi-Yau is trivially minimal. Thus, birational

equivalence between two Calabi-Yau’s implies the existence of a chain of flops

connecting them.

2.3 F L O P S

In this section we recall a few facts about the categories of perverse coherent

sheaves and construct the corresponding moduli spaces.



2.3 F L O P S 23

2.3.1 Perverse Coherent Sheaves

Henceforth we assume to be working within the following setup.

Situation 2.3.1

Fix a smooth and projective variety Y of dimension three, over C, with trivial

canonical bundleωY
∼= OY and satisfying H1(Y,OY) = 0. Fix a map f : Y→X

satisfying the following properties:

• f is birational and its fibres are at most one-dimensional;

• X is projective and Gorenstein;

• Rf∗OY = OX.

Notice that from the assumptions it follows that X has rational singularities [Kov00],

that its canonical bundle is trivial, ωX
∼= OX and that f is crepant. Also, for any

sheaf G on Y, Ri f∗G = 0 for i ≥ 2.

The main protagonist of this thesis is Bridgeland’s category of perverse coherent

sheaves pPer(Y/X) of Y over X. As mentioned in the overview chapter there are

different versions of it, indexed by an integer p called the perversity. We shall only

need two of them, corresponding to the −1 and 0 perversity. One way to define

these categories is by using a torsion pair [BR07], which we now recall (see also

[Ber04, Section 3]).

Notation. For compactness we will often denote Coh(Y) by A and pPer(Y/X)

by pA.

Let

C= {E ∈Coh(Y) |Rf∗E = 0}
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and consider the following subcategories of A:

0T =
¦

T ∈A
�

�

�R1 f∗T = 0
©

−1T =
¦

T ∈A
�

�

�R1 f∗T = 0,Hom(T,C) = 0
©

−1F= {F ∈A | f∗F = 0}

0F= {F ∈A | f∗F = 0,Hom(C,F) = 0} .

The pair ( pT, pF) is a torsion pair on A, for p = −1,0, and the tilt of A with

respect to it is the category of perverse coherent sheaves pA. Notice that we picked

the convention where

pF[1]⊂ pA⊂D[−1,0](Y).

We mention in passing that the structure sheaf is perverse coherent, OY ∈ pT ⊂ pA.

Notation. For convenience (and unless otherwise stated) we shall adopt the con-

vention where p stands for either −1 or 0 and q =−(p + 1). In other words, if p

stands for one perversity, q will stand for the other.

Before moving on we state an easy lemma.

2.3.2 LEMMA – For all T ∈ pT we have Hi (Y,T) = Hi (X, f∗T), for all i . For all

F ∈ pF we have Hi (Y,F) = Hi−1(X,R1 f∗F).

For a proof one may use Leray’s spectral sequence.
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2.3.2 Moduli

To define the motivic Hall algebra of pA in the next section we need, first of

all, an algebraic stack pA parameterising objects of pA. We build it as a substack

of the stack MumY, which was constructed by Lieblich [Lie06] and christened

the mother of all moduli of sheaves. For its definition and some further properties

we refer the reader to the next section. We only recall that MumY parameterises

objects in the derived category of Y with no negative self-extensions. This last

condition is key to avoid having to enter the realm of higher stacks. We point out

that as pA is the heart of a t-structure its objects satisfy this condition.

Notation. We denote by A the stack of coherent sheaves, in other words the stack

parameterising objects of A.

Notice that the definition of pA is independent of the ground field and is stable

under field extension. Concretely, take E ∈ MumY(T) a family of complexes

over Y parameterised by a scheme T and t : Spec k → T a geometric point. We

can consider E|LYt
, the derived restriction of E to the fibre Yt of YT over t , and it

makes sense to write E|LYt
∈ pA (where the latter category is interpreted relatively

to k).

2.3.3 PROPOSITION – Define a prestack4 by the rule

pA(T) =
n

E ∈MumY(T)
�

�

�∀t ∈T,E|LYt
∈ pA

o

with restriction maps induced by MumY and where by t ∈ T we mean that t :

Spec k → T is a geometric point of T. The prestack pA is an open substack of

MumY.

4 We use the term prestack in analogy with presheaf.
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Proof: As mentioned earlier, objects of pPer(Y/X) have vanishing self-extensions and

therefore can be glued. In other words, pA satisfies descent. To prove that the inclusion

pA → MumY is open, we employ van den Bergh’s projective generators. For this, we

introduce some auxiliary spaces.

If U⊂X is open, we can consider the restriction g : V = f −1(U)→U of the morphism

f . The category of perverse coherent sheaves pPer(V/U) =: pAU still makes sense and

the corresponding stack pAU satisfies descent. Notice that pAX = pA.

When U is affine, there exists a vector bundle P (a projective generator [Ber04]) on V

such that an object of the derived category E is perverse coherent (relatively to g : V→U)

if and only if HomV(P,E[i ]) = 0 for i 6= 0. In other words, E is perverse coherent if

and only if the complex Rg∗RHom(P,E) is concentrated in degree zero. From this we

automatically deduce that the morphism pAU →MumV is open as this last condition is

open.

To pass from local to global, we recall that in [Ber04] it was also proved that one check

whether a complex is a perverse coherent sheaf on an open cover of X. In other words, if

E ∈ D(Y) and if U→X is an open affine cover and V = f −1(U), then E ∈ pPer(Y/X) if

and only if E|V ∈ pPer(V/U).

We have restriction morphisms MumY → MumV and pA → AU. When U → X is

an open affine cover, we can realise pA as the fibre product of pAU→MumU←MumY.

This is enough to conclude that the inclusion pA→MumY is open. �

It will be important for us to also have moduli spaces for the torsion and torsion-

free subcategories pT, pF. We define them similarly as above.

pF(T) =
n

E ∈A(T)
�

�

�∀t ∈T,E|LYt
∈ pF

o

pT(T) =
n

E ∈A(T)
�

�

�∀t ∈T,E|LYt
∈ pT

o
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Notice that pT = pA∩A and pF[1] = pA∩A[1]. One has the expected open

inclusions of algebraic stacks

pT, pF⊂A⊂Mum
[−1,0]
Y

pT, pF[1]⊂ pA⊂Mum
[−1,0]
Y

where Mum
[−1,0]
Y is the substack of MumY parameterising complexes concen-

trated in degrees −1 and 0.

We conclude this section with a technical result regarding the structure of pA.

This will essentially allow us to carry all the proofs to set up the motivic Hall

algebra of pA from the case of coherent sheaves.

2.3.4 PROPOSITION – Let p =−1. There is a collection of open substacks pAn ⊂
pA which jointly cover pA. Each pAn is isomorphic to an open substack of A.

To prove this result we start by remarking that, as a consequence of our as-

sumptions on Y, the structure sheaf OY is a spherical object [Huy06, Definition

8.1] in Db(Y). Thus the Seidel-Thomas spherical twist around it is an autoequi-

valence of Db(Y). This functor can be explicitly described as the Fourier-Mukai

transform with kernel the ideal sheaf of the diagonal of Y shifted by one. We

thus get an exact auto-equivalence τ of Db(Y) and we notice that the subcategory

of complexes with no negative self-extensions is invariant under τ. As Fourier-

Mukai transforms behave well in families [BBHR09, Proposition 6.1] we also ob-

tain an automorphism (which by abuse of notation we still denote by τ) of the

stack MumY.

Let us now fix an ample line bundle L downstairs on X. Tensoring with f ∗Ln

also induces an automorphism of MumY. The automorphism τn ∈Aut(MumY)

is then defined by τn(E) = τ(E⊗ f ∗Ln). The following lemma tells us how to

use the automorphisms τn to deduce the proposition above.
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2.3.5 LEMMA – Let p = −1 and let E ∈ pA be a perverse coherent sheaf. Then

there exists an n0 such that for all n ≥ n0

fτn(E) = τn(E)[−1] ∈A.

Proof: The two key properties we use of τn are that it is an exact functor and that for a

complex G we have an exact triangle

H•(Y,G(n))⊗C OY
ev−→G(n)→ τn(G)9

where G(n) =G⊗OY
f ∗Ln .

Let now E ∈ pA be a perverse coherent sheaf together with its torsion pair exact se-

quence (in pA)

F[1] ,→ E�T

where F ∈ pF, T ∈ pT. Using Leray’s spectral sequence, the projection formula, Lemma

2.3.2 and Serre vanishing on X we can pick n big enough so that all hypercohomologies

involved, H•(Y,F[1](n)), H•(Y,T(n)), H•(Y,E(n)), are concentrated in degree zero.

From the triangle

H•(Y,E(n))⊗C OY
ev−→ E(n)→ τn(E)9

we have that τn(E) ∈D[−1,0](Y), similarly for τn(F[1]) and τn(T). From the triangle

H•(Y,F[1](n))⊗C OY
ev−→ F[1](n)→ τn(F[1])9

we obtain that H0(τn(F[1])) = 0.
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From the triangle

τn(F[1])→ τn(E)→ τn(T)9

arising from exactness of τn we have that H0(τn(T)) ' H0(τn(E)). Thus to prove the

lemma it suffices to show that H0(τn(T)) = 0.

Finally, from the triangle

H•(Y,T(n))⊗C OY→T(n)→ τn(T)9

one obtains the following exact sequence.

0→H−1(τn(T))→H0(Y,T(n))⊗C OY
α−→T(n)

β
−→H0(τn(T))→ 0

Thus we have

τn(E)[−1] ∈A ⇐⇒ H0(τn(E))'H0(τn(T)) = 0 ⇐⇒ β= 0.

Let K = kerβ. We then have two short exact sequences

H−1(τn(T)) H0(Y,T(n))⊗C OY K

K T(n) H0(τn(T))

γ

δ β

and notice thatδγ = α. By pushing forward the first sequence via f∗ we have that R1 f∗K =

0, as R1 f∗OY = 0. Pushing forward the second sequence yields the exact sequence

f∗K ,→ f∗T(n)� f∗H
0(τn(T))

and R1 f∗H
0(τn(T)) = 0, as R1 f∗T(n) = 0 (this last is a consequence of Lemma 2.3.2 and

the projection formula).
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By taking n even bigger we can assume f∗T(n) to be generated by global sections and

thus we can assume f∗α to be surjective. As α = δγ we obtain that f∗δ is surjective and

thus f∗H
0(τn(T)) = 0. As a consequence we have that H0(τn(T)) ∈ C.

The sheaf T(n) is in pT (this is a simple computation, the key fact to notice is that

C(n) = C). Finally, as T(n) ∈ pT and H0(τn(T)) ∈ C, β= 0. �

To prove Proposition 2.3.4 we define pAn to be the subcategory of pA consist-

ing of elements E such that eτn(E) ∈ A. We can produce a moduli stack for pAn

via the following composition of cartesian diagrams.

pAn eτ−1
n (A) A

pA MumX MumX
eτn

We obtain that pAn is an open substack of pA and is isomorphic to an open

substack of A via eτn . From the previous lemma we have that the sum of the

inclusions
∐

n
pAn→ pA is surjective.

Remark 2.3.6. The proof we just presented here of Proposition 2.3.4 worked for

p = −1, and we do not know a direct way to extend this result to the zero

perversity. However, we can work around this issue by making the following

additional assumption (which will hold in the cases which are of interest to us,

i.e. for flops and the McKay correspondence): we assume the existence of a Fourier-

Mukai equivalence taking 0Per(Y/X) to −1Per(W/X), with W a variety over X

satisfying the same assumptions as Y. Using this, we obtain a variant of Proposi-

tion 2.3.4, namely for q = 0 there exists a collection {qAn}n of open substacks of

qA such that, for every n, qAn is isomorphic to an open substack of the stack of

coherent sheaves on W.

Henceforth, we will tacitly assume this extra hypothesis so that this strategy of

passing to W can be applied.
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2.4 S U B S TAC K S

At the core of the construction of the Hall algebra of an abelian category lies

the existence of a moduli stack5 parameterising its objects (and a moduli of short

exact sequences). In our case this amounts, first of all, to proving the existence

of the moduli stack pA, parameterising perverse coherent sheaves. We have men-

tioned in the first section that as the category pA is the heart of a t-structure, its

objects have no negative self-extensions. This simple remark is actually key, as we

construct pA as an open substack Lieblich’s mother of moduli of sheaves Mum

[Lie06]. Let us recall its definition.

First, fix a flat and proper morphism of schemes π : X→ S.

2.4.1 DEFINITION – An object E ∈ D(OX) is (relatively over S) perfect and uni-

versally gluable if the following conditions hold.

• There exists an open cover {Ui} of X such that E|Ui
is quasi-isomorphic to

a bounded complex of quasi-coherent sheaves flat over S.

• For any S-scheme u : T→ S we have

RπT,∗RHomXT
(Lu∗XE, Lu∗XE) ∈D≥0(OT)

where πT and uX denote the maps induced by π and u respectively on the

base-change XT.

We denote the category of perfect and universally gluable sheaves on X (over S) as

Dpug(OX).

5 The author would like to thank Fabio Tonini for patiently explaining to him many things about
stacks.
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If in the definition we take S to be affine and assume T = S, then it’s clear that

gluability has to do with the vanishing of negative self-exts of E. This condition is

necessary to avoid having to enter the realm of higher stacks.

A prestack MumX is defined by associating with an S-scheme T → S (the as-

sociated groupoid of) the category Dpug(OXT
) of perfect and universally gluable

complexes (relatively over T). The restriction functors are defined by derived pull-

back.

2.4.2 THEOREM (Lieblich) – The prestack MumX is an Artin stack, locally of

finite presentation over S.

From now on we fix π : X→ S flat and projective with S a noetherian scheme.

We assume all rings and schemes to be locally of finite type over S.6

We want to construct various open substacks of MumX, namely stacks of com-

plexes satisfying additional properties. For example we would like to construct

the stack of complexes with cohomology concentrated in degrees less or equal

than a fixed integer n. The correct way to proceed is by imposing conditions fibre-

wise on restrictions to geometric points. Let us illustrate a general recipe first.

The following diagram comes in handy.

Xt XT X

Spec k T S

πt

tX

πT

uX

π

t u

6 For what follows, this assumption isn’t substantial (as MumX is locally of finite type over S) but
it enables us to use the local criterion of flatness directly. This is essentially a consequence of
[LMB00, Corollaire (10.11) (ii)].
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Here T is the base space for our family of complexes, together with its structure

map to S, and t ∈T is a geometric point. Given a property P, we might define the

stack of complexes satisfying P as follows.

MumP
X(T) =

n

E ∈MumX(T)
�

�

�∀ geometric t ∈T,E|LXt
satisfies P

o

We recall that by E|LXt
we mean Lt ∗XE.

To construct the substacks of MumX we are interested in we make use of the

following lemma.

2.4.3 LEMMA – Let T→ S be an S-scheme, let t : Spec k→ T be a point of T and

let E ∈ Db(OXT
) be a bounded complex of OXT

-modules flat over T. Let n ∈ Z

be an integer. The following statements hold.

1. E|LXt
∈D≤n(OXt

)⇐⇒Xt ⊂U>, where

U> =
⋂

q>n

XT \ supp Hq (E) .

2. E|LXt
∈D[n](OXt

)⇐⇒Xt ⊂U, where

U = U>∩Uf∩U<

U> =
⋂

q>n

XT \ supp Hq(E)

Uf =
¦

x ∈XT

�

�

�Hn(E)x is a flat OT,πT(x)-module
©

U< =
⋂

q<n

XT \ supp Hq(E).
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3. E|LXt
∈ D≥n(OXt

)⇐⇒ F ∈ D[n](OXt
), where F = σ≤nE is the stupid trun-

cation of E in degrees less or equal than n.

Fp =











Ep , if p ≤ n

0, if p > n

Proof: PROOF OF 1. Let tX be the inclusion of the fibre Xt → XT. As tX is an affine

map we do not lose information on the cohomologies of E|LXt
after pushing forward back

into XT. We also have isomorphisms

tX,∗E|
L
Xt
' E

L
⊗OXT

tX,∗OX,t ' E
L
⊗OXT

π∗T t∗k

where the first follows from the projection formula and the second from base change

compatibility. As we are interested in the vanishing of Hq(E|LXt
) we may restrict to the

stalk at a point x ∈Xt . Taking stalks at x gives us isomorphisms

Hq
�

E|LXt

�

x
'Hq

�

Ex
L
⊗OT,t

k
�

. (2.4.4)

We have the page two spectral sequence of the pullback

Lp t ∗XHq(E) =⇒Hp+q(E|LXt
). (2.4.5)

which, at a point x ∈Xt and using the isomorphism (2.4.4), boils down to

Tor
OXt
−p

�

Hq (E)x , k
�

=⇒Hp+q
�

E|LXt

�

x
. (2.4.6)

Let now q be the largest integer such that Hq(E) 6= 0. From the spectral sequence (2.4.6)

we have

Hq
�

E|LXt

�

x
'Hq(E)x ⊗OT,t

k.
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Hence, by Nakayama, Hq(E|LXt
)x = 0 if and only if x ∈XT \ supp Hq(E) and finally

Hq(E|LXt
) = 0⇐⇒Xt ⊂XT \ supp Hq(E).

PROOF OF 2. Using 1. we can assume that E|LXt
∈D≤n(OXt

). By the spectral sequence

(2.4.5) we have that Hn−1(E|LXt
) ' L1 t ∗XHn(E). Again, we may pass on to the stalk at a

point x ∈Xt and (2.4.6) yields

Hn−1
�

E|LXt

�

x
'Tor

OXt
1 (Ex , k)

the vanishing of which is equivalent, by the local criterion for flatness, to Hq(E)x being a

flat OX,t -module.

We can thus assume that Xt ⊂U>∩Uf. Once more, from the spectral sequence (2.4.6)

we have that

Hn−1(E|LXt
)' t ∗XHn−1(E)

and we proceed as in the proof of 1.

PROOF OF 3. Consider the page one spectral sequence

Lq t ∗XEp =⇒Hp+q
�

E|LXt

�

from which we get isomorphisms

Hp
�

E|LXt

�

'Hp
�

t ∗XE
�

as a consequence of flatness of the Eq ’s. Thus, for p < n,

Hp
�

E|LXt

�

= 0⇐⇒Hp
�

t ∗XE
�

= 0⇐⇒Hp
�

t ∗XF
�

= 0.

�
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2.4.7 PROPOSITION – Define the prestack Mum≤n
X = Mum

[−∞,n]
X by assigning

to each S-scheme T the groupoid

Mum≤n
X (T) =

n

E ∈MumX(T)
�

�

�∀ geometric t ∈T,E|LXt
∈D≤n(OXt

)
o

with restriction functors induced by MumX. The prestack Mum≤n
X is an open

substack of MumX.

Proof: That Mum≤n
X satisfies descent is a direct consequence of descent for MumX. To

prove that it is indeed an open substack it is sufficient to prove that for any affine S-scheme

T, together with a morphism T→MumX corresponding to a complex E ∈MumX(T),

the set

V =
n

t ∈T
�

�

�E|LXt
∈D≤n(Xt )

o

is an open subset of T.

By Lemma 2.4.3 1. we know that t ∈ V if and only if Xt ⊂ U> (notice that by our

assumptions the complex E is bounded). Thus πT(XT \U>) = πT(XT) \V. The set

U> is open as the sheaves Hq(E) are quasi-coherent and of finite type. Finally, the sets

πT(XT) and πT(XT \U>) are closed, being the image of closed subsets under a proper

map. Thus, V is open. �

Notice that the condition of being concentrated in degrees less or equal than n

is in fact a global condition, i.e. we could have requested E ∈D≤n(OXT
) directly.

We now impose on our complexes the further condition of being concentrated

in a fixed degree n ∈ Z. This stack will be isomorphic to the stack of coherent

sheaves shifted by −n.
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2.4.8 PROPOSITION – Define the prestack Mum
[n]
X by assigning to each S-scheme

T the groupoid

Mum
[n]
X (T) =

n

E ∈Mum≤n
X (T)

�

�

�∀t ∈T,E|LXt
∈D[n](OXt

)
o

with restriction functors induced by MumX.The prestack Mum
[n]
X is an open

substack of Mum≤n
X .

Proof: The proof follows along the lines as the previous one. It suffices to show that

for any affine scheme T, together with a map T→Mum≤n
X corresponding to a complex

E ∈Mum≤n
X (T), the set

V =
n

t ∈T
�

�

�E|LXt
∈D[n](OXt

)
o

is an open subset of T. By Lemma 2.4.3 2. we know that t ∈V if and only if Xt ⊂U. The

sets U<,U> are open as the sheaves Hq(E) are quasi-coherent and of finite type. The set

Uf is open by the open nature of flatness [EGAIV-3, Théorème 11.3.1]. Thus U is open

and we conclude as in the previous proof. �

When n = 0 we get back the ordinary stack of coherent sheaves on X.

We now turn to the opposite condition: being concentrated in degrees greater

or equal than a fixed n ∈Z.

2.4.9 PROPOSITION – Define the prestack Mum≥n
X =Mum

[n,∞]
X by assigning to

each S-scheme T the groupoid

Mum≥n
X (T) =

n

E ∈MumX(T)
�

�

�∀t ∈T,E|LXt
∈D≥n(OXt

)
o

with restriction functors induced by MumX. The prestack Mum≥n
X is an open

substack of MumX.
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Proof: As in the previous proofs we consider a complex E ∈MumX(T) corresponding

to a morphism T→MumX and prove that the set

V =
n

t ∈T
�

�

�E|LXt
∈D≥n(Xt )

o

is an open subset of T. By Lemma 2.4.3 3. this set is equal to

V =
n

t ∈T
�

�

�F|LXt
∈D[n](Xt )

o

which is open by the previous proof. �



3
H A L L A L G E B R A S

Before recalling the definition of the motivic Hall algebras we need, it is in-

structive (at least to develop some intuition) to start by sloppily defining the sort

of algebra we would like to work with. As a reference, we should mention [Rin90;

Sch09] and the seminal work [Rei10].

Let A be an abelian category. We define H(A) to be the vector space of func-

tions f : A→Q, which assign to each object of A a rational number. This vector

space can be equipped with a convolution product ∗ defined as follows:

f ∗ g (E) :=
∑

A⊂E

f (A)g (E/A).

In other words, f ∗ g applied to an object E is the sum, over all possible isomorph-

ism classes (with E fixed) of short exact sequences

0→A→ E→ E/A→ 0,

of f applied to the kernel and g applied to the cokernel. With ∗, we call H(A)

the Hall algebra of A. What we are blatantly ignoring here is the fact that, for

the expressions we wrote above to even make sense, various finiteness conditions

should be imposed.

39
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Given A ∈A, there is a delta function element 1A ∈H(A), defined as

1A(E) :=











1 if E ∼= A,

0 otherwise.

Notice that the delta of the zero object 10 is the neutral element for ∗.

More generally, given a subcategory B ⊂ A, we can define its characteristic

function

1B(E) :=











1 if E ∈B,

0 otherwise.

Given two subcategories Bi , i = 1,2, the product of the characteristic functions

can be written as

1B1
∗1B2

(E) =
∑

B1,→E�B2
Bi∈Bi

1

i.e. one counts 1 for every short exact sequence with middle term E, kernel be-

longing to B1 and cokernel lying in B2.

For example, if A comes equipped with a torsion pair (T,F), there is an identity

1A = 1T ∗1F

where 1A is the characteristic function of the whole category A. This identity

is a consequence of the crucial property of torsion pairs, which can phrased as

saying that any object of A sits in a unique exact sequence with torsion kernel and

torsion-free cokernel.
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If we fix an object P ∈A, we can define an element

1P(E) := #HomA(P,E)

counting the number of maps with domain P. We can also define a sort of Quot

element as

QP(E) := #{P� E}

this time counting epimorphisms with domain P. The first isomorphism theorem

for the abelian category A translates then into the identity

1P
A
=QP ∗1A

as any morphism P→ E factors through its image P� I (and we can then take the

cokernel to obtain an exact sequence)

0→ I→ E→ E/P→ 0.

In our context, which broadly speaking is that of a C-linear abelian category,

there is no hope that any of the finiteness conditions required to make the previous

definitions work are satisfied. The first remedy one takes is to replace the coarse

datum of an abelian category A with a moduli stackA , parameterising its objects.

Objects E ∈A of the original abelian category are now C-points of the stack:

SpecC
E−→A .
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The elements of the Hall algebra H(A) are now given by Q-linear combinations

of (suitable motivic equivalence classes of) morphisms of stacks

�

V
f
−→A

�

.

One might still think of such an f as a function on the category A, where the

evaluation of f at an object E (which we now think as a C-point ofA ) would be

the “size” of the fibre product V⊗A C.

We will not define the product structure on the motivic Hall algebra just yet,

as it will be explained in detail below. We will, however, describe a special case.

IfB ⊂A is an open substack parameterising objects of a corresponding subcat-

egory B⊂A then we have an element 1B corresponding to the inclusion ofB in

A . Given two such elements 1Bi
, i = 1,2, their product 1B1

∗1B2
turns out to be

represented by Z→A , where Z is the space parameterising short exact sequences

0→ B1→ E→ B2→ 0

where Bi ∈ Bi , and the morphism sends such a sequence to the middle term

E. The identity 1A = 1T ∗ 1F seen earlier (in the presence of a couple of open

substacks corresponding to a torsion pair) immediately follows.

If P is an object of A (for example the structure sheaf of our variety) and there

exists a stackA P parameterising objects of A together with a morphism from P,

we can define an element 1P
A

as being the forgetful morphismA P→A . Finally,

if as well A admits a Quot-scheme for the object P, the first isomorphism theorem

again implies the identity 1P
A
=QP ∗1A.

Now that we have built up some intuition for Hall algebras, we move on to a

rigorous treatment of them.
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3.1 G RO T H E N D I E C K R I N G S

Our goal is to construct the Hall algebra of perverse coherent sheaves, which

is a module over K(St /C), the Grothendieck ring of stacks. We start by recall-

ing the definition of the latter and then proceed to check that we can port the

construction of the Hall algebra of coherent sheaves to the perverse case.

Remark. As this porting process relies on Proposition 2.3.4, we remind the reader

of Remark 2.3.6.

All the omitted proofs can be found, for example, in [JS08; Bri12].

3.1.1 DEFINITION – The Grothendieck ring of schemes K(Sch /C) is defined to be

the Q-vector space spanned by isomorphism classes of schemes of finite type over

C modulo the cut & paste relations:

[X] = [Y]+ [X\Y]

for all Y closed in X. The ring structure is induced by [X×Y] = [X] · [Y].

Notice that the zero element is given by the empty scheme and the unit for

the multiplication is given by [SpecC]. Also, the Grothendieck ring disregards

any non-reduced structure, as [Xred] = [X]− 0. This ring can equivalently be

described in terms of geometric bijections and Zariski fibrations.

3.1.2 DEFINITION – A morphism f : X→Y of finite type schemes is a geometric

bijection if it induces a bijection on C-points f (C) : X(C)→Y(C).

A morphism p : X→Y is a Zariski fibration if there exists a trivialising Zariski

open cover of Y. That is, there exists a Zariski open cover {Yi}i of Y together

with schemes Fi such that p−1(Yi )
∼= Yi ×Fi , as Yi -schemes.



3.1 G RO T H E N D I E C K R I N G S 44

Two Zariski fibrations p : X→Y, p ′ : X′→Y have the same fibres if there exists

a trivialising open cover for both fibrations such that the fibres are isomorphic

Fi
∼= F′i .

3.1.3 LEMMA – We can describe the ring K(Sch /C) as the Q-vector space spanned

by isomorphism classes of schemes of finite type over C modulo the following re-

lations.1

1. [X1qX2] = [X1]+ [X2], for every pair of schemes X1, X2.

2. [X1] = [X2] for every geometric bijection f : X1→X2.

3. [X1] = [X2] for every pair of Zariski fibrations pi : Xi → Y with same

fibres.

We now consider the Grothendieck ring of stacks.

3.1.4 DEFINITION – A morphism of finite type algebraic stacks f : X1 → X2 is

a geometric bijection if it induces an equivalence of groupoids on C-points f (C) :

X1(C)→X2(C).2

A morphism of algebraic stacks p : X → Y is a Zariski fibration if given any

morphism from a scheme T→ Y the induced map X×Y T→ T is a Zariski fibra-

tion of schemes. In particular a Zariski fibration is a schematic morphism.

Two Zariski fibrations between algebraic stacks pi : Xi →Y have the same fibres

if the two maps Xi ×Y T→ T induced by a morphism from a scheme T→ Y are

two Zariski fibrations with the same fibres.

3.1.5 DEFINITION – The Grothendieck ring of stacks K(St /C) is defined to be

the Q-vector space spanned by isomorphism classes of Artin stacks of finite type

over C with affine geometric stabilisers, modulo the following relations.

1 The three relations we present here are actually redundant, cf. [Bri12, Lemma 2.9], although the
same is not true for stacks.

2 We point out that geometric bijections are relative algebraic spaces [AH11, Lemma 2.3.9].
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1. [X1qX2] = [X1]+ [X2] for every pair of stacks X1,X2.

2. [X1] = [X2] for every geometric bijection f : X1→X2.

3. [X1] = [X2] for every pair of Zariski fibrations pi : Xi → Y with the same

fibres.

Let us call L = [A1] the element represented by the affine line. The obvious

ring homomorphism K(Sch /C)→ K(St /C) becomes an isomorphism after in-

verting the elements L and (Lk−1), for k ≥ 1 [Bri12, Lemma 3.9]. Thus the ring

homomorphism factors as follows.

K(Sch /C)→K(Sch /C)[L−1]→K(St /C)

We also mention that through the lens of the Grothendieck ring one cannot tell

apart varieties from schemes or even algebraic spaces [Bri12, Lemma 2.12].

It also makes sense to speak of a relative Grothendieck group K(St /S), where

S is a fixed base stack which we assume to be Artin, locally of finite type over

C and with affine geometric stabilisers. We define K(St /S) to be spanned by

isomorphism classes of morphisms [W→ S] where W is an Artin stack of finite

type over C with affine geometric stabilisers, modulo the following relations.

1. [ f1q f2 : X1qX2 −→ S] = [X1
f1→ S]+ [X2

f2→ S], for every pair of stacks Xi .

2. For a morphism f : X1 → X2 over S, with f a geometric bijection, [X1 →

S] = [X2→ S].

3. For every pair of Zariski fibrations with the same fibres X1→ Y←X2 and

every morphism Y→ S

[X1→Y→ S] = [X2→Y→ S].
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Given a morphism a : S→T we have a pushforward map

a∗ : K(St /S)−→K(St /T)

[X→ S] 7−→ [X→ S
a→T]

and given a morphism of finite type b : S→T we have a pullback map

b ∗ : K(St /T)−→K(St /S)

[X→T] 7−→ [X×T S→ S].

The pushforward and pullback are functorial and satisfy base-change. Further-

more, given a pair of stacks S1, S2 there is a Künneth map

κ : K(St /S1)⊗K(St /S2)−→K(St /S1×S2)

[X1→ S1]⊗ [X2→ S2] 7−→ [X1×X2→ S1×S2].

Take now A to be the stack of coherent sheaves on X, where X is smooth and

projective over C, and denote by H(A) the Grothendieck ring K(St /A) (where A

stands for CohX). We can endow H(A) with a convolution product, coming from

the abelian structure of A. The product is defined as follows. Let A(2) be the stack

of exact sequences in A. There are three natural morphisms a1, b ,a2 : A(2) → A

which take an exact sequence

A1 ,→ B�A2

to A1,B,A2 respectively. Consider the following diagram.
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A(2) A

A×A

b

(a1,a2)

We remark that (a1,a2) is of finite type [Bri12, Lemma 4.2]. A convolution product

can be then defined as follows:

m : H(A)⊗H(A)−→H(A)

m = b∗(a1,a2)
∗κ.

Explicitly, given two elements [X1
f1→ A], [X2

f2→ A] we write f1 ∗ f2 = m( f1⊗ f2)

for their product which is given by the top row of the following diagram.

Z A(2) A

X1×X2 A×A

�

b

(a1,a2)

f1× f2

f1 ∗ f2

The convolution product endows H(A)with an associative K(St /C)-algebra struc-

ture with unit element given by [SpecC = A0 ⊂ A], the inclusion of the zero

object.

3.2 P E RV E R S E C O H E R E N T S H E AV E S

We now assume to be working in Situation 2.3.1. We want to replace A by pA

and construct the analogous algebra H( pA). We first need the moduli stack pA(2)



3.2 P E RV E R S E C O H E R E N T S H E AV E S 48

parameterising short exact sequences in pA. Define a prestack pA(2) by assigning

to each scheme T the groupoid pA(2)(T) whose objects are exact triangles

E1→ E→ E29

with vertices belonging to pA(T) and whose morphisms are isomorphisms of tri-

angles. The restriction functors are given by derived pullback, which is an exact

functor so takes exact triangles to exact triangles.

3.2.1 PROPOSITION – The prestack pA(2) is an Artin stack locally of finite type

over C with affine stabilisers.

Proof: This prestack is well-defined and satisfies descent. In fact, given the existence of

the stack of objects of pA, the only issue arises in gluing automorphisms. This is taken care

of by noticing that Ext<0
A
(A,B) vanishes for any two objects A,B ∈ pA [AP06][Lemma

2.1.10]. Take now p = −1. We want to use the functors eτn of Lemma 2.3.5. Notice

that the subcategory pAn ⊂ pA, of objects which become coherent after a twist by eτn , is

extension-closed and hence we have a well-defined stack of exact sequences pA(2)
n , which is

an open substack of pA(2). Using Proposition 2.3.4 and the fact that eτn is an exact functor

we can embed pA(2)
n inside A(2), thus proving that pA(2)

n is algebraic.

The sum
∐

n
pA(2)

n →
pA(2) is surjective and thus the stack pA(2) is algebraic. All other

properties are deduced by the fact that pA(2)
n is an open substack of A(2). To deal with the

p = 0 case one appeals to Remark 2.3.6. �

The proof actually produces more: it gives an analogue of Proposition 2.3.4.

As for coherent sheaves, the stack pA(2) comes equipped with three morphisms

a1, b ,a2, sending a triangle of perverse coherent sheaves

E1→ E→ E29

to E1,E,E2 respectively. The exact functor eτn yields a commutative diagram
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pA
(2)
n A(2)

pAn× pAn A×A

(a1,a2)

where the vertical arrow on the right is the corresponding morphism for coherent

sheaves, which is of finite type. From this last observation and the fact that being

of finite type is local on the target, we automatically have that the (global) morph-

ism (a1,a2) : pA(2) → pA2 is of finite type. To define the convolution product

on K(St / pA) (or equivalently the algebra structure of H( pA)) we may proceed

analogously as for coherent sheaves. As usual, this discussion is valid for p = −1,

but an entirely parallel one can be carried out for p = 0 using Remark 2.3.6.

3.3 M O R E S T RU C T U R E

There is a natural way to bestow a grading upon our Hall algebras. Recall that

for a triangulated category T and the heart H of a bounded t-structure on T, the

Grothendieck groups K(T) and K(H) coincide (by taking alternating sums of

cohomology objects). In particular, K(Db(Y)) can be viewed as both K(A) or

K( pA). The Euler form χ is defined as

χ (E,F) =
∑

j

(−1) j dimC Ext j
Y(E,F)

on coherent sheaves E,F and then extended to the whole of K(Y). By Serre duality

the left and right radicals of χ are equal and we define the numerical Grothendieck
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group of Y as N(Y) = K(Y)/K(Y)⊥. As the numerical class of a complex stays

constant in families we have a decomposition

MumY =
∐

α∈N(Y)

MumY,α

where MumY,α parameterises complexes of class α. Let Γ denote the positive cone

of coherent sheaves, i.e. the image of objects of A inside N(Y). It is a submonoid

of N(Y) and for A the previous decomposition can be refined to

A=
∐

α∈Γ
Aα.

We can also define sub-modules H(A)α ⊂H(A), where H(A)α denotes K(St /Aα)

(which can be thought as spanned by classes of morphisms [W → A] factoring

through Aα). We then get a Γ-grading

H(A) =
⊕

α∈Γ

H(A)α.

Analogously, we have a positive cone p Γ ⊂ N(X) of perverse coherent sheaves.

The Hall algebra thus decomposes as

H( pA) =
⊕

α∈p Γ

H( pA)α.

We mentioned earlier that the morphism from the Grothendieck ring of variet-

ies to the Grothendieck ring of stacks factors as follows

K(Sch /C)→K(Sch /C)[L−1]→K(St /C).
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Let R = K(Sch /C)[L−1]. One can define a subalgebra [Bri12, Theorem 5.1]

Hreg(A) of regular elements as the R-module spanned by classes [W→A] with W

a scheme. We have an analogous setup for perverse coherent sheaves.

3.3.1 PROPOSITION – Let Hreg(
pA) to be the sub-R-module spanned by classes

[W → pA] with W a scheme. Then Hreg(
pA) is closed under the convolution

product and the quotient

Hsc(
pA) = Hreg(

pA)/(L−1)Hreg(
pA)

is a commutative K(Sch /C)-algebra.

Proof: Once again, we may appeal to the case of coherent sheaves by using the functors

eτn . Let p = −1. Let [ f1 : S1 → pA], [ f2 : S2 → pA] be two elements of H( pA) such that

the Si are schemes. Consider the two morphisms

f1× f2 :S1×S2→
pA× pA

(a1,a2) : pA(2)→ pA× pA

used to define the product f1 ∗ f2 in H( pA). It suffices to show that the fibre product

T = (S1×S2)×pA×pA
pA(2)

is a regular element. Consider the open cover {pAn}n of pA given in Proposition 2.3.4.

The first thing we notice is that the collection {pAn× pAn}n is an open cover of pA× pA

(it covers the whole product via Lemma 2.3.5). Pulling it back via f1× f2 yields open

covers {Si ,n}n for each of the Si and an open cover {S1,n×S2,n}n of S1×S2.
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On the other hand, by the proof of Proposition 3.2.1 we have an open cover {pA(2)
n }n

of pA(2). By pulling back we obtain an open cover {Tn}n of T. By chasing around base-

changes one can see that

Tn = (S1,n×S2,n)×pAn×pAn

pA(2)
n .

The functor eτn induces morphisms pAn × pAn → A×A, pA(2)
n → A(2) and it is easy to

check that

pA(2)
n = ( pAn×

pAn)×A×AA
(2)

thus Tn = (S1,n×S2,n)×A×AA
(2) and by [Bri12, Theorem 5.1] it is a regular element. We

conclude that T is also a regular element.

When p = 0 one may use Remark 2.3.6. �

We now briefly turn back to the case of coherent sheaves. The semi-classical Hall

algebra of coherent sheaves Hsc(A), defined as Hreg(A)/(L− 1)Hreg(A), can be

equipped with a Poisson bracket given by

{ f , g}=
f ∗ g − g ∗ f

L−1
.

There is another Poisson algebra Qσ [Γ], which depends on a choice σ ∈ {−1,1},

defined as the Q-vector space spanned by symbols qα, with α ∈ p Γ, together with

a product

qα1 ∗ qα2 = σχ (α1,α2)qα1+α2 .

and a Poisson bracket

{qα1 , qα2}= σχ (α1,α2)χ (α1,α2)qα1+α2 = χ (α1,α2)(qα1 ∗ qα2).
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Given a locally constructible function [JS08, Chapter 2] λ : A(C) → Z, there

exists a so-called integration morphism

I : Hsc(A)→Qσ [Γ].

For convenience of the reader we compactly recall its properties [Bri12, Theorem

5.2]. The map I is the unique homomorphism of rational vector spaces such that

if V is a variety and f : V→A factors through Aα, for α ∈ Γ, then

I ([ f ]) = χ (V, f ∗λ) qα

where

χtop(V, f ∗λ) =
∑

n∈Z

nχtop((λ◦ f )−1(n))

and where, for a variety V, χtop(V) denotes the topological Euler characteristic.

Moreover, I is a homomorphism of commutative algebras if, for all F,G ∈ (A),

λ(F⊕G) = σχ (F,G)λ(F)λ(G)

and is a homomorphism of Poisson algebras if the expression

χ
�

PExt1
A
(F,G),λ(Eθ)−λ(E0)

�

is symmetric in F and G. The notation Eθ stands for the extension

0→G→ Eθ→ F→ 0

corresponding to a class θ ∈ Ext1
A
(F,G).



3.3 M O R E S T RU C T U R E 54

For σ = 1 one can choose λ to be identically equal to 1. This gives a well-defined

integration morphism which in turn leads to naive curve counting invariants. We

are more interested in the case σ = −1 (although what follows certainly holds

for the naive invariants as well) where one takes Behrend’s microlocal function ν .

For Hsc(A) we know [JS08, Theorem 5.5] that the Behrend function satisfies the

necessary hypotheses and thus yields an integration morphism.

To define an integration morphism in the context of perverse coherent sheaves

we first define Qσ [
p Γ] analogously as Qσ [Γ], but using the cone of perverse coher-

ent sheaves. In this context, we may still use Behrend’s function. More precisely,

every Artin stack M locally of finite type over C comes equipped with a Behrend

function νM and given any smooth morphism f : M′→M of relative dimension

d we have f ∗νM = (−1)d νM′ . To obtain an integration morphism on H( pA) the

Behrend function must satisfy the assumptions of [Bri12, Theorem 5.2]. But these

concern only the points of pA and we know that pA is locally isomorphic to A, so

the assumptions are satisfied and we have a well-defined integration morphism

I : H( pA)→Qσ [
p Γ].



4
F L O P S

As hinted at in the overview chapter, the proof of our main result can be

roughly divided into two blocks: the first is concerned with proving a formula

relating ‘perverse’ DT invariants with ordinary ones; the second uses this formula

to compare the DT invariants over a flop. We will start by focusing on the former.

Recall that we denote by A the category of coherent sheaves of Y. In the

previous sections we reminded ourselves of the category of perverse coherent

sheaves pA and of the subcategories pT, pF. We also reminded ourselves of the

motivic Hall algebra of coherent sheaves H(A), defined as the Grothendieck ring

K(St /A) of stacks over the stack of coherent sheaves A equipped with the con-

volution product. We also constructed a moduli stack pA parameterising objects

in pA and the Hall algebra H( pA) of perverse coherent sheaves, together with

the subalgebra of regular elements Hreg(
pA), its semi-classical limit Hsc(

pA) and

the integration morphism I : Hsc(
pA) → Qσ [

p Γ]. Recall that p Γ is the cone of

perverse coherent sheaves sitting inside the numerical Grothendieck group N(Y)

and we take σ =−1,1 depending on the choice of a locally constructible function

on pA (either the function identically equal to one or the Behrend function).

4.1 A RO U T E

Before we start off, we would like to give a moral proof our main result, which

will later guide us through the maze of technical details. As we are interested

55
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in counting curves, we will restrict to sheaves (and complexes) supported in di-

mension at most one. All the constructions and definitions so far restrict to this

setting, and we will append a≤ 1 subscript to notify this change (e.g. we deal with

the Hall algebra H( pA≤1) of perverse coherent sheaves supported in dimension at

most one). The two key results are the identities (4.1.1), (4.1.2). Continuing from

the overview chapter, our goal is to understand the relationship between perverse

DT numbers pDT(Y/X) and ordinary DT numbers DT(Y).

The Hilbert scheme of curves and points Hilb≤1(Y) maps to A≤1 by taking a

quotient OY� E to E, thus defining an elementH≤1 ∈H(A≤1).
1 From the previ-

ous section we know that the integration morphism is related to taking weighted

Euler characteristics and in fact integratingH≤1 gives the generating series for the

DT invariants2

I(H≤1)“=”DT(Y) :=
∑

β,n

DTY(β, n)q (β,n)

where β ∈ N1(Y) ranges among curve-classes in Y and n ∈ Z is a zero-cycle.

The perverse Hilbert scheme pHilb≤1(Y/X) produces a corresponding element

pH ≤1 of H( pA≤1), which upon being integrated produces pDT (Y/X).

The first thing we remark is that, as quotients (in A) of OY lie in pT and pT ⊂ pA,

we can interpret H≤1 as an element of H( pA≤1). There is an element 1pF≤1[1]

in H( pA≤1) represented by the inclusion pF≤1[1] ⊂ pA≤1. There is also a stack

parameterising objects of pF≤1[1] together with a morphism from OY. This stack

1 Strictly speaking this is false as Hilb(Y) is not of finite type. We shall later enlarge our Hall algebra
precisely to deal with this issue.

2 Again, this is slightly imprecise, there is a sign issue to be explained at the beginning of Section
(4.8).



4.1 A RO U T E 57

maps down to pA≤1 by forgetting the morphism, yielding an element 1OpF≤1[1]
. We

will prove that there is an identity

pH ≤1 ∗1pF≤1[1]
= 1OpF≤1[1]

∗H≤1 (4.1.1)

in the Hall algebra of perverse coherent sheaves. Let us see how one might deduce

this.

We extend the notation 1pF[1], 1
O
pF[1]

to general subcategories B⊂ pA (whenever

we have an open inclusion of stacks B⊂ pA) producing elements 1B, 1O
B

in H( pA),

and similarly for H(A). As ( pT, pF) is a torsion pair in A, we have an identity

1A = 1pT ∗1pF. This follows from the fact that for any coherent sheaf E there is a

unique exact sequence T ,→ E� F with T ∈ pT, F ∈ pF. Notice that the product

1pT ∗ 1pF is given by [Z→A] where Z parameterises exact sequences T ,→ E� F

and the morphism Z→A sends such an exact sequence to E.

We also have an identity 1O
A
= 1OpT ∗ 1OpF. This is a consequence of the previous

identity plus the fact that Hom(OY, pF) = 0 (Lemma 2.3.2). This last fact also

tells us that 1OpF = 1pF. Moreover, the first isomorphism theorem for the abelian

category A is reflected in the identity 1O
A
= H ∗ 1A (any morphism OY → E

factors through its image). Combining everything together (and restricting to

sheaves supported in dimension at most one) we see that H≤1 = 1O
A≤1
∗ 1−1

A≤1
=

1OpT≤1
∗1−1

pT≤1
.

A parallel argument can be carried out for pA yielding

pH ≤1 = 1OpA≤1
∗1−1

pA≤1
= 1OpF≤1[1]

∗ (1OpT≤1
∗1−1

pT≤1
) ∗1−1

pF≤1[1]
= 1OpF≤1[1]

∗H≤1 ∗1−1
pF≤1[1]
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from which we extract (4.1.1). Notice that for the identity 1OpA≤1
= 1OpF≤1[1]

∗1OpT≤1

one uses

HomY(OY, pF≤1[2]) = 0.

We now want to understand how to rewrite 1OpF≤1[1]
in a more familiar form.

It turns out that duality almost interchanges qT and pF, where q = −(p + 1).

Precisely, let Q be the subcategory of A consisting of sheaves with no subsheaves

supported in dimension zero. Let Qexc denote the subcategory of Q made up of

sheaves Q such that R f∗Q is supported in dimension zero and let qT• = Qexc∩ qT.

It is a simple computation (Lemma 4.5.1) to check that the duality functor D =

RHomY(−,OY)[2] takes qT• to pF≤1. The category Q is related to DT invariants

in the following way.

There is an identity 1O
Q
= H # ∗ 1Q in H(A), where H # corresponds to (yet

another) Hilbert scheme of a tilt A# of A, where A# is the category in which quo-

tients of OY are the so-called stable pairs of Pandharipande and Thomas [PT09]

(see also [Bri11]). We can restrict to sheaves with zero-dimensional pushdown,

which yields an identity 1O
Qexc

= H #
exc ∗ 1Qexc

, which can be refined to 1OqT•
=

H #
exc ∗ 1qT•

. Integrating H #
exc gives the generating series for the Pandharipande-

Thomas (PT) invariants of Y [Bri11, Lemma 5.5]

I(H #
exc)“=”PTexc(Y) :=

∑

β,n
f∗β=0

PTY(β, n)q (β,n)

where β ranges over the curve-classes contracted by f . If we let

DT0(Y) :=
∑

n
DTY(0, n)qn
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we know [Bri12, Theorem 1.1] that the reduced DT invariants DT′(Y) := DT(Y)/ DT0(Y)

coincide with the PT invariants PT(Y).

Now, the (shifted) duality functor D′ = D[1] induces a anti-homomorphism

between Hall algebras3 and takes qT• to pF≤1[1] and so we have D′(1qT•
) =

1pF≤1[1]
. Furthermore, as a consequence of Serre duality, D′(1OqT•

) = 1OpF≤1[1]
. As

a result we have

1OpF≤1[1]
= 1pF≤1[1]

∗D′
�

H #
exc

�

(4.1.2)

as 1OpF≤1[1]
= D′

�

1OqT•

�

= D′
�

H #
exc ∗1qT•

�

= D′
�

1qT•

�

∗D′
�

H #
exc

�

= 1pF≤1[1]
∗

D′
�

H #
exc

�

(notice that duality is an anti-equivalence and thus swaps extensions).

We can rewrite (4.1.1) as follows.

pH≤1 ∗1pF≤1[1]
= 1pF≤1[1]

∗D′
�

H #
exc

�

∗H≤1 (4.1.3)

Duality and integration can be interchanged up to a flip in signs. Precisely

I
�

D′
�

H #
exc

��

“=”PT∨exc(Y) :=
∑

β,n
f∗β=0

PTY(−β, n)q (β,n).

Upon integrating the two sides of (4.1.3) the two 1pF≤1[1]
cancel out4 and we are

left with the identity

pDT (Y/X) = PT∨exc(Y) ·DT(Y).

3 More precisely it induces a morphism between certain subalgebras to be defined below.
4 This is the content of Proposition 4.7.4, a consequence of an important result of Joyce.
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4.2 T H E P E RV E R S E H I L B E RT S C H E M E

We now proceed along the route traced in the previous section, but taking care

of technical details. Let us start by working in infinite-type versions H∞(A≤1),

H∞(
pA≤1) of our Hall algebras. The advantage of H∞ is that we include stacks

locally of finite type over C (e.g. pA≤1), the disadvantage is that we do not have an

integration morphism at our disposal. To define this algebra we proceed exactly

as in the previous section: the only differences being that we allow our stacks to

be locally of finite type over C, we insist that geometric bijections be finite type

morphisms and we disregard the disjoint union relation.5

The first element we consider is H≤1 ∈ H∞(A≤1) corresponding to the Hil-

bert scheme of Y, which parameterises quotients of OY in A≤1. To be precise,

H≤1 is represented by the forgetful morphism Hilb≤1(Y)→ A≤1, which takes a

quotient OY � E to E. For us, the important thing to notice is that if OY � E

is a quotient in A≤1, then E ∈ pT. This is a consequence of OY ∈ pT and of the

fact that the torsion part of a torsion pair is closed under quotients. Thus the

morphism Hilb≤1(Y)→ A≤1 factors through pT≤1. As pT≤1 ⊂ pA≤1, H≤1 can

be interpreted as an element of H∞(
pA≤1).

Once and for all we establish some general notation. For B⊂A a subcategory

we denote 1B the element of H∞(A) represented by the inclusion of stacksB⊂A,

when this is an open immersion (analogous notation for A≤1 and pA≤1). Another

important stack is AO
≤1, the stack of framed coherent sheaves [Bri11, Section 2.3],

which parameterises sheaves with a fixed global section OY→ E. By considering

surjective sections we can realise Hilb≤1(Y) as an open subscheme of AO
≤1. We

5 If we allowed both the disjoint union relation and spaces of infinite type then we would be left
with the zero ring. Indeed, if Z is an infinite disjoint union of points, then Z \ {pt} ∼= Z and
thus [Z] = [Z]− 1 so 1 = 0. The finite type assumption for geometric bijections is there to avoid
pathologies such as an infinite disjoint union of points representing the same class as a line.
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have a forgetful map AO
≤1→ A≤1, which takes a morphism OY→ E to E. Given

an open substack B⊂A≤1, we can consider the fibre product BO =B×A≤1
AO
≤1,

which gives an element 1O
B
∈H∞(A≤1).

We want to emulate this last construction for H∞(
pA≤1). We define the stack

pAO of framed perverse coherent sheaves as the prestack taking a base S to a family

of perverse coherent sheaves P together with a morphism OS×Y→ P. It is useful

for us to realise pAO as a fibre product as follows.

Note first that we also have a stack C parameterising coherent sheaves on X.

Pushforward of complexes induces a morphism of stacks pA → C. In fact, for

this to be well-defined, we simply need to check that given a family of perverse

coherent sheaves P over a base S, the pushforward RfS,∗P is a coherent sheaf. This

can be verified on fibres. If s ∈ S is a point, then Ls∗RfS,∗P = Rfs ,∗P|LYs

6, which is

a coherent sheaf as P|LYs
is a perverse coherent sheaf.

Moreover, there is a corresponding stack of framed sheaves CO [Bri11, p. 2.3].

For P ∈ pA, morphisms OY→ P correspond (by adjunction) to morphisms OX→

Rf∗P. We know that Rf∗P is a sheaf, so morphisms OY→ P correspond to points

of CO.

To make the argument work in families, we notice that over a base S we still

have RfS,∗OS×Y = OS×X (this follows from flatness of S→ SpecC and base change).

Hence, the considerations made above still apply and pAO sits in the cartesian

diagram below.

pAO CO

pA C

6 For a proof of this non-flat base-change refer the reader to [Har12, Proposition 6.3].
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Once again, we have an obvious substack pAO
≤1, which can also be described as the

preimage of pA≤1.

We have elements 1pF≤1[1]
, 1pT≤1

∈H∞(
pA≤1) corresponding to the subcategor-

ies pF≤1[1],
pT≤1 of pA≤1. By taking fibre products with pA≤1

O→ pA≤1 we pro-

duce elements 1OpF≤1[1]
, 1OpT≤1

∈H∞(
pA≤1).

We also want a perverse Hilbert scheme pHilb≤1(Y/X) of Y over X paramet-

erising quotients of OY in pA≤1. One can realise it as an open substack of pAO
≤1.

Indeed, for α : OY→ P with P ∈ pA≤1, being surjective is equivalent to the cone

of α lying in pA≤1[1], which we know to be an open condition on pAO
≤1. Thus we

have an element pH≤1 ∈H∞(
pA≤1).

4.3 A F I R S T I D E N T I T Y

We want to prove the identity

pH≤1 ∗1pF≤1[1]
= 1OpF≤1[1]

∗H≤1 (4.3.1)

which we motivated in the beginning of this section. The left hand side is repres-

ented by a stack ML, parameterising diagrams

OY

P1 E P2

where all objects are in pA≤1, the sequence P1 ,→ E� P2 is exact in pA≤1, OY�

P1 is surjective in pA≤1 and P2 ∈ pF≤1[1].
7

7 To be precise, over a base U, the groupoid ML(U) consists of diagrams as above which, upon
restricting to fibres of points of U, satisfy the required properties. Similar remarks will be implicit
for the other stacks we define below.



4.3 A F I R S T I D E N T I T Y 63

The right hand side is represented by a stack MR parameterising diagrams

OY OY

F[1] E T

sur

where the horizontal maps form a short exact sequence in pA≤1, F ∈ pF≤1,T ∈
pT≤1 and the map OY → T is surjective as a morphism in A≤1. We remind

ourselves that ( pF≤1[1],
pT≤1) is a torsion pair in pA≤1 so that given a perverse co-

herent sheaf E, there is a unique exact sequence F[1] ,→ E�T, with F ∈ pF≤1,T ∈
pT≤1.

As the proof of the required identity goes through a chain of geometric bijec-

tions and Zariski fibrations, we draw a diagram for future reference.

ML M MR

M′ N

In what follows, we shall make use of the next lemma. By perverse kernel,

cokernel, surjection etc. we mean kernel, cokernel, surjection etc. in the abelian

category pA.

4.3.2 LEMMA – Let ϕ : OY → E be a morphism from the structure sheaf to a

perverse coherent sheaf. Then the following are equivalent: the perverse cokernel

of ϕ lies in pF[1]; the cone of ϕ belongs to D≤−1(Y); the morphism H0(ϕ) is

surjective.

Proof: Let σ : E → T be the surjection from E to its torsion-free part. We first show

that the statement pcokerϕ ∈ pF[1] is equivalent to σϕ being surjective as a morphism

of coherent sheaves. First of all notice that as H0(σ) is an isomorphism then H0(σϕ) is
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surjective if and only if H0(ϕ) is surjective. Consider the diagram obtained by factoring

ϕ through the perverse image and by taking the perverse cokernel.

OX E

I K

ϕ

α β

Glancing at the cohomology sheaves long exact sequence we see that H0(α) is surjective.

Thus H0(ϕ) is surjective if and only if H0(β) is surjective if and only if H0(K) = 0 if and

only if K ∈ pF[1].

Let now C be the cone of ϕ. By taking the cohomology sheaves long exact sequence

we immediately see that H0(ϕ) is surjective if and only if C ∈D≤−1(Y). �

We now define a stack M′ parameterising diagrams of the form

OY

E

ϕ

where pcokerϕ ∈ pF≤1[1]. By the previous lemma this last condition is equivalent

to cone(ϕ) ∈D≤−1(Y), which is open. Thus M′ is an open substack of the stack

of framed perverse sheaves pAO
≤1.

4.3.3 PROPOSITION – There is a map ML → M′ induced by the composition

OY� P1 ,→ E. This map is a geometric bijection.

Proof: This map induces an equivalence on C-points. To prove finite typeness of the

morphism we use a fact that shall be proved later: namely, the stack ML represents a

Laurent element of our Hall algebra. This follows as ML is the product pH≤1 ∗ 1pF≤1[1]
,

and both these elements are Laurent. Thus, for any numerical class α, we have a morphism

ML,α→M′
α. As ML,α is of finite type, we are done. �

We define another stack M parameterising diagrams of the form
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OY

F[1] E T

ϕ

where the horizontal maps form a short exact sequence of perverse sheaves, F ∈
pF≤1, T ∈ pT≤1 and pcokerϕ ∈ pF≤1[1]. This stack can be obtained as a fibre

product as follows. The element 1pF≤1[1]
∗ 1pT≤1

is represented by a morphism

Z→ pA≤1 and M is the top left corner of the following cartesian diagram.

M M′

Z pA≤1

4.3.4 PROPOSITION – The morphism M→M′ defined by forgetting the exact

sequence is a geometric bijection.

Proof: The morphism in question is precisely the top row of the previous diagram. The

bottom row is obtained by composing the top arrows of the following diagram.

Z pA
(2)
≤1

pA≤1

pF≤1[1]× pT≤1
pA≤1× pA≤1

b

where the bottom row is an open immersion (and thus of finite type) and the morphism

b is of finite type (this follows from the fact that b locally is isomorphic to the analogous

morphism for coherent sheaves). The morphism Z→ pA≤1 induces an equivalence on C-

points because ( pF≤1[1],
pT≤1) is a torsion pair in pA≤1 (and thus any perverse coherent

sheaf has a unique short exact sequence with torsion kernel and torsion-free cokernel) and

because an automorphism of a short exact sequence which is the identity on the middle

term is trivial. As M→M′ is a base change of Z→ pA≤1 we are done. �
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Thus the identity (4.3.1) boils down to proving that M and MR represent the

same element in the Hall algebra H∞(
pA). To do this we use one last stack N and

build a pair of Zariski fibrations with same fibres. We define the stack N to be the

moduli of the following diagrams

OY

F[1] E T

sur (4.3.5)

where the horizontal maps form a short exact sequence of perverse sheaves, F ∈
pF≤1, T ∈ pT≤1 and the map OY→T is surjective on H0. This stack is also a fibre

product of known stacks (compare with the element 1pF≤1[1]
∗H≤1). Notice that

there are two maps M→N←MR. The map MR→N is given by forgetting the

morphism OY → F[1]. The map M→N is given by composition OY → E→ T

(which is a surjective morphism thanks to the previous lemma).

4.3.6 PROPOSITION – The maps M→N←MR are two Zariski fibrations with

the same fibres.

Proof: Keeping in mind diagram (4.3.5), the idea is that over a perverse coherent sheaf E

the morphism MR→N has fibres HomY(OY,F[1]) while M→N has fibres lifts OY→ E.

The long exact sequence

0→HomY(OY,F[1])→HomY(OY,E)→HomY(OY,T)→ 0

tells us that given a choice of a lift ofOY→T all lifts are in bijection with HomY(OY,F[1]).

Let’s see how to make this argument work in families. Let S be an affine and connected

scheme and let S→N correspond to a diagram
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OY

F[1] E T

sur

on YS. First of all notice that base change and Lemma 2.3.2 (and the proof of Proposition

2.4.7) tell us that RpS,∗F is just H1(YS,F) shifted by one, where pS : YS→ S is the projec-

tion. In addition, H1(YS,F) is flat over S, or in other words OYS
and F have constant Ext

groups in the sense of [Bri12, Section 6.1] (all the others vanish).

Let W be the fibre product MR×N S. This is actually a functor which associates to

an affine S-scheme q : T→ S the group H1(YT, q∗YF) and we know by loc. cit. that it is

represented by a vector bundle over S of rank the rank of H1(YS,F).

Similarly, the fibre product M×N S is represented by an affine bundle of rank the rank

of H1(YS,F) (notice that because of the previous arguments the exact sequence at the

beginning of the proof still holds over S). This concludes the proof. �

4.4 P T I N VA R I A N T S

We are still left with the task of understanding what we obtain by integrating

pH≤1. To achieve this goal we first substitute 1OpF≤1[1]
with something more re-

cognisable (from the point of view of the integration morphism I). Recall [Bri11,

Section 2.2] that on A there is a torsion pair (P,Q), where P consists of sheaves

supported in dimension zero and Q is the right orthogonal of P. In particular,

an element Q ∈ Q which is supported in dimension one is pure. Notice also that

OY ∈ Q. We denote by A# the tilt with respect to (P,Q), but with the convention

P[−1]⊂A# ⊂D[0,1](Y).
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There exists a scheme Hilb#
≤1(Y) parameterising quotients of OY in A# sup-

ported in dimension at most one. Using [Bri11, Lemma 2.3] one constructs an

elementH #
≤1 ∈H∞(A≤1) which eventually leads to the PT invariants of Y. We

recall that quotients of OY in A# are exactly morphisms OY→Q, with cokernel

in P and Q ∈ Q.

In H∞(A≤1) we have an element 1Q≤1
given by the inclusion of the stack para-

meterising objects in Q≤1 inside A≤1 and its framed version 1O
Q≤1

. There is also an

identity [Bri11, Section 4.5]

1O
Q≤1

=H #
≤1 ∗1Q≤1

.

We want to restrict the elementH #
≤1 further by considering only quotients whose

derived pushforward R f∗ is supported in dimension zero. We thus define the

following subcategories.

Qexc = {Q ∈ Q |dimsuppR f∗Q = 0}

pAexc = {E ∈
pA |dimsuppR f∗E = 0}

pTexc =
pT∩ pAexc

pT• =
pTexc∩Qexc

We can also consider the scheme Hilb#
exc(Y) parameterising quotients of OY in

A#
≤1 with target having zero-dimensional pushdown (it is indeed an open subs-

cheme of Hilb#
≤1(Y) as we are imposing a restriction on the numerical class of the

quotients). From it we obtain an elementH #
exc ∈H∞(A). Before we move on to

the following result, we point out that pT• ⊂A#
≤1
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4.4.1 PROPOSITION – The following identity in H∞(A) is true.

1OpT•
=H #

exc ∗1pT•
(4.4.2)

Proof: We start with a remark. If we have a morphism OY → T in A#, with T ∈ pT•,

we can factor it through its image (in A#) OY→ I→ T and we denote by Q the quotient,

again in A#. We already know [Bri11, Lemma 2.3] that I is a sheaf and that the morphism

OY→ I, as a morphism in A, has cokernel P supported in dimension zero.

Glancing at the cohomology sheaves long exact sequence reveals that Q is also a sheaf,

thus the sequence I ,→ T�Q is actually a short exact sequence of sheaves. The sheaf Q

is in pT, as it is a quotient of T, and it lies in Q as it is an object of A#. Also, R f∗Q is

supported on points as R f∗T is, thus Q ∈ pT•.

On the other hand, given a morphism of sheaves OY→ I, which is an epimorphism in

A#, and given a short exact sequence of coherent sheaves I ,→ T�Q, with I ∈ Qexc and

Q ∈ pT•, we claim that T ∈ pT•. The fact that T ∈ Qexc is clear, if we prove that I ∈ pT then

we are done.

We know there is an exact sequence OY → I � P, with P supported in dimension

zero, viz. a skyscraper sheaf. Let I� F be the projection to the torsion-free part of I (for

the ( pT, pF) torsion pair). The morphism OY → I� F is zero, as objects of pF have no

sections. Thus there is a morphism P→ F such that I� P→ F is equal to I� F. As P is

a skyscraper sheaf, the morphisms from it are determined on global sections, thus P→ F

is zero, which in turn implies that I� F is zero. Thus F = 0 and I ∈ pT.

Using the remark above we can see that there exists a morphism from the stack para-

meterising diagrams

OY

I T Q
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with OY→ I an epimorphism in A#, I ∈ Qexc, Q ∈ pT•, to the stack parameterising morph-

isms OY→ T, with T ∈ pT•. This morphism induces an equivalence on C-points and the

fact that it is of finite type will follow from Proposition 4.6.5 and Proposition 4.5.2. �

4.5 D UA L I T Y

We will see now how to link everything together via the duality functor.

4.5.1 LEMMA – Let D : D(Y)→D(Y) be the anti-equivalence defined by

E 7−→D (E) = RHomY(E,OY)[2].

Then

D (qT•) =
pF≤1

for q =−(p + 1).

The shift [2] in the definition of D is due to the fact we are dealing with

pure sheaves supported in codimension two. Indeed, if Q1 is the category of

pure sheaves supported in dimension one, then D(Q1) = Q1 [Bri11, Lemma 5.6].

Notice that any sheaf F ∈ pF≤1 is automatically pure, as the existence of a zero-

dimensional subsheaf would contradict the condition f∗F = 0.

Proof: We will prove the two inclusions D(qT•)⊂ pF≤1, D( pF≤1)⊂ qT•, but first let us

make a consideration about the category C≤1 of coherent sheaves supported in dimension
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at most one with vanishing derived pushforward. We have D(C≤1) = C≤1. In fact, as

C≤1 ⊂ Q1, one has D(C≤1)⊂ Q1, thus one needs only check Rf∗D(C) = 0, for all C ∈ C≤1.

Rf∗D(C) = Rf∗RHomY(C,OY)[2]

= Rf∗RHomY(C, f !OX)[2]

= RHomX(Rf∗C,OX)[2] = 0

Let F ∈ pF≤1. We first check that R1 f∗D(F) = 0.

R1 f∗D(F) = H1 �Rf∗RHomY(F,OY))[2]
�

= H3 �RHomX (Rf∗F,OX)
�

= H3
�

RHomY(R
1 f∗F[−1],OX)

�

= Ext4
X

�

R1 f∗F,OX

�

= Ext4
X

�

R1 f∗F,OX

�

= 0

where the last equality follows from Serre duality and the second to last is a consequence of

the local-to-global spectral sequence and the fact that R1 f∗F (and thus Ext4
Y(R

1 f∗F,OY)) is

supported in dimension zero. When p =−1 this is enough to show that D( pF≤1)⊂ qT•.

When p = 0 we are still left to check that HomY(D( pF≤1),C) = 0. If F ∈ pF≤1, then

(using the fact that D is an antiequivalence of D(Y))

HomY(D(F),C≤1) = HomY(C≤1,F)⊂HomY(C,F) = 0

where the last equality is by definition of 0F. To complete the proof, we show that if

T ∈ A≤1 is such that R1 f∗T = 0 and HomY(T,C≤1) = 0, then HomY(T,C) = 0. In fact,

let T→C be a morphism with C ∈ C. The image I satisfies R1 f∗I = 0 as it is a quotient

of T and f∗I = 0 as it is a subobject of C. Observing that T� I is surjective implies that

I ∈ C≤1 and that T→C is the zero morphism.
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Let now T ∈ qT•, we check that f∗D(T) = 0.

f∗D(T) = H0 �Rf∗RHomY (T,OY) [2]
�

= H2 �RHomX ( f∗T,OX)
�

= Ext2
X ( f∗T,OX)

= Ext2
X ( f∗T,OX) = 0

where the last two equalities again follow from Serre duality and the dimension of the

support of f∗T. Analogously as above, this is enough for p = −1, and for p = 0 we see

that HomY(C≤1,D(qT•)) = 0.

Let now F ∈ A≤1 be such that f∗F = 0 and HomY(C≤1,F) = 0. It follows that

HomY(C,F) = 0. In fact, if C → F is a morphism with C ∈ C, then the image I satis-

fies f∗I = 0 as it is a subobject of F and satisfies R1 f∗I = 0 as it is a quotient of C. As I ,→ F

is injective, I ∈ C≤1 which implies that C→ F is the zero morphism. �

We now want to apply the duality functor, or better D′ = D[1], to our Hall al-

gebras. As the category pF≤1[1] (respectively qT•) is closed by extensions we have

an algebra H∞(
pF≤1[1]) (respectively H∞(

qT•)) spanned by morphisms [W →
pF≤1[1]] (respectively [W→ qT•]). Notice that while the first is a subalgebra of

H∞(
pA≤1), the second can be viewed as a subalgebra of both H∞(

qA≤1) and

H∞(A≤1), as a distinguished triangle with vertices lying in qT• is an exact se-

quence in both qA and A.

4.5.2 PROPOSITION – The functor D′ induces an anti-isomorphism between the

algebras H∞(
qT•) and H∞(

pF≤1[1]). Furthermore the following identities hold.

D′
�

1qT•

�

= 1pF≤1[1]

D′
�

1OqT•

�

= 1OpF≤1[1]



4.5 D UA L I T Y 73

Proof: Duality D′ induces an isomorphism between stacks qT• and pF≤1[1]. The anti-

isomorphism between the Hall algebras is then defined by taking a class [W → qT•] to

[W → qT• → pF≤1[1]] and noticing that duality flips extensions [Bri11, Section 5.4].

Clearly this takes the element 1qT•
to 1pF≤1[1]

, while the second identity requires a bit

of work.

Two remarks are in order. The first is that given any T ∈ qT•,

HomY(OY,T) = HomY(D
′(T),OY[3]) = HomY(OY,D′(T))∨.

The second is that, if T ∈ qT• and F ∈ pF≤1, then dimC H0(Y,T) = χ (T) and similarly

dimC H1(Y,F) =−χ (F). This is useful since, for a family of coherent sheaves, the Euler

characteristic is locally constant on the base. Thus we can decompose the stack qT• as a

disjoint union according to the value of the Euler characteristic. We have a corresponding

decomposition of qT•
O and we write qTO

•,n for the nth component of this disjoint union.

This space maps down to qT•,n by forgetting the section. Similarly, the space An× qT•,n

projects onto qT•,n . As these two maps are Zariski fibrations with same fibres the stacks

qTO
•,n and An× qT•,n represent the same element in the Grothendieck ring. This argument

is then extended to the whole qTO
•,n proving that

�

qTO
•

�

=

�

∐

n
An× qT•,n

�

.

We can proceed analogously for pF≤1[1]. The component pF≤1[1]
O
n represents the same

element as An × pF≤1[1]n . The first remark above implies that duality D′ takes qT•,n to

pF≤1[1]n , which lets us conclude. �
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Thus in our infinite-type Hall algebra we deduce that 1OpF≤1[1]
= D′(1OqT•

) =

D′(H #
exc ∗ 1qT•

) = 1pF≤1[1]
∗D′(H #

exc). Accordingly, we have the following iden-

tities.

1OpF≤1[1]
= 1pF≤1[1]

∗D′(H #
exc)

and

pH≤1 ∗1pF≤1[1]
= 1pF≤1[1]

∗D′(H #
exc) ∗H≤1.

4.6 L AU R E N T E L E M E N T S

Our objective is to get rid of the spurious 1pF≤1[1]
’s in the identity above. This is

achieved by constructing a (weak) stability condition (in the sense of [JS08, Defin-

ition 3.5]) with values in the ordered set {1,2}, such that pF≤1[1] manifests as the

class of semi-stable objects of µ = 2. Before we do that, however, we want to

define a sort of completed Hall algebra H( pA)Λ (parallel to the one in [Bri11, Sec-

tion 5.2]) which morally sits in between H( pA≤1) and H∞(
pA≤1). The reason we

need to do so is simple. On one hand the Hall algebra constructed in the previous

section only includes spaces that are of finite type, on the other the infinite type

Hall algebra is much too big to support an integration morphism. To deal with

objects such as the Hilbert scheme of curves and points of Y we allow our spaces

to be locally of finite type while imposing a Laurent condition.

We previously mentioned that H( pA) is graded by the numerical Grothendieck

group N(Y). There is a subgroup N≤1(Y) generated by sheaves supported in di-
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mension at most one and H( pA≤1) is graded by it. We also notice [Bri11, Lemma

2.2] that the Chern character induces an isomorphism

N≤1(Y) 3 [E] 7−→ (ch2 E,ch3 E) ∈N1(Y)⊕N0(Y)

where by N1(Y) we mean the group of curve-classes modulo numerical equival-

ence, and N0(Y)'Z. Henceforth we tacitly identify N≤1(Y) with N1(Y)⊕Z.

We have a pushforward morphism f∗ : N1(Y) → N1(X). This morphism is

surjective and we denote its kernel by N1(Y/X). The short exact sequence

N1(Y/X) ,→N1(Y)
f∗�N1(X)

is of free abelian groups (of finite rank) therefore it splits (non-canonically)

N1(Y) ∼= N1(X)⊕N1(Y/X).

Elements of N≤1(Y) can then be described by triples (γ ,δ, n) ∈N1(X)⊕N1(Y/X)⊕

Z. We denote the image of pA≤1 (via the Chern character) in N≤1(Y) by p ∆ (this

is the cone of perverse coherent sheaves supported in dimensions ≤ 1). The al-

gebra H( pA≤1) is graded by p ∆. Finally, by E ⊂N1(Y/X) we denote the effective

curve classes in Y which are contracted by f .

4.6.1 DEFINITION – We define a subset L ⊂ p ∆ to be Laurent if the following

conditions hold:

• for all γ there exists an n(γ , L) such that for all δ, n with (γ ,δ, n) ∈ L one

has that n ≥ n(γ , L);
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• for all γ , n there exists a δ(γ , n, L) ∈ E such that for all δ with (γ ,δ, n) ∈ L

one has that δ ≤ δ(γ , n, L).8

We denote by Λ the set of all Laurent subsets of p ∆.

Notice that Λ does not depend on the choice of the above splitting. We have

the following lemma.

4.6.2 LEMMA – The set Λ of Laurent subsets of p ∆ satisfies the two following

properties.

1. If L1, L2 ∈Λ then L1 +L2 ∈Λ.

2. If α ∈ p ∆ and L1, L2 ∈Λ then there exist only finitely many decompositions

α= α1 +α2 with α j ∈ L j .

Proof: We start by proving (1). Fix a γ and let (γ ,δ, n) ∈ L1+L2. By [KM98, Corollary

1.19] there are only finitely many decompositions γ = γ1 + γ2 with γi ≥ 0 (i.e. with γi ef-

fective). Given a decomposition (γ ,δ, n) = (γ1+γ2,δ1+δ2, n1+n2), with (γi ,δi , ni ) ∈

Li , we know that ni ≥ n(γi , Li ) so n = n1 + n2 ≥ n(γ1, L1)+ n(γ2, L2). By letting the

γi ’s vary we obtain the desired lower bound for n.

Fix now γ , n. We want to find an upper bound for the possible δ’s such that (γ ,δ, n) ∈

L1 + L2. By the argument above we know that for decompositions (γ ,δ, n) = (γ1 +

γ2,δ1+δ2, n1+n2) with (γi ,δi , ni ) ∈ Li the possible combinations of γi and ni are finite.

Fix such a decomposition (γ1 + γ2,δ1 +δ2, n1 + n2). We know that δi ≤ δ(γi , ni , Li ).

Thus δ = δ1 +δ2 ≤ δ(γ1, n1, L1) +δ(γ2, n2, L2). Take now another decomposition

(γ ′1 + γ
′
2,δ ′1 +δ

′
2, n′1 + n′2). Running the same argument we have that δ ≤ δ(γ ′1, n′1, L1)+

δ(γ ′2, n′2, L2). Finally, asδ(γi , ni , Li ),δ(γ
′
i , n′i , Li )≥ 0, we concludeδ ≤

∑

i δ(γi , ni , Li )+

δ(γ ′i , n′i , Li ). By taking the sum for all possible decompositions we have our upper bound

for δ.

8 For δ,δ ′ ∈N1(Y/X), by the notation δ ≤ δ ′ we mean δ ′−δ ∈ E or equivalently δ−δ ′ ∈−E .
In general we will write α≥ 0 to denote that a certain class is effective.
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Let us now prove (2). Fix a class α = (γ ,δ, n) ∈ p ∆ and two Laurent subsets L1, L2.

Again by [KM98, Corollary 1.19] we know that there are only finitely many possible de-

compositions γ = γ1 +γ2. Thus we may fix γ1 and γ2. Given a decomposition (γ ,δ, n) =

(γ1 + γ2,δ1 +δ2, n1 + n2), there are again finitely many possible values occurring for

n1, n2, as ni ≥ n(γi , Li ). Thus we may take n1, n2 also to be fixed. Finally, the com-

binations (γ ,δ, n) = (γ1 + γ2,δ1 +δ2, n1 + n2) are again a finite number, as δ = δ1 +

δ2 lives in δ(γ1, n1, L1)+δ(γ2, n2, L2)−E (thus we can apply [KM98, Corollary 1.19]

again). �

We now have all the ingredients to define a Λ-completion H( pA≤1)Λ of H( pA≤1).

Let us give a general definition.

4.6.3 DEFINITION – Let R be a p ∆-graded associative Q-algebra. We define RΛ

to be the vector space of formal series

∑

(γ ,δ,n)

x(γ ,δ,n)

with x(γ ,δ,n) ∈ R(γ ,δ,n) and x(γ ,δ,n) = 0 outside a Laurent subset. We equip this

vector space with a product

x · y =
∑

α∈p ∆

∑

α1+α2=α

xα1
· yα2

.

The algebra R is included in RΛ as any finite set is Laurent. To a morphism R→ S

of p ∆-graded algebras corresponds an obvious morphism RΛ→ SΛ.

There is a subalgebra

Qσ [
p ∆]⊂Qσ [

p Γ]
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spanned by symbols qα with α ∈ p ∆. Notice that the Poisson structure on Qσ [
p ∆]

is trivial as the Euler form on N≤1(Y) is identically zero. The integration morph-

ism restricts to I : Hsc(
pA≤1) → Qσ [

p ∆] and so, by taking Λ-completions, we

have a morphism

IΛ : Hsc(
pA≤1)Λ −→Qσ [

p ∆]Λ.

Remark 4.6.4. Notice that given an algebra R as above and an element r ∈R with

r(0,0,0) = 0, the element 1− r is invertible in RΛ. This is due to the fact that the

series

∑

k≥0

r k

makes sense in RΛ.

Now it’s time to have a look at what the elements of H( pA≤1)Λ look like. Let

M be an algebraic stack locally of finite type over C mapping down to pA≤1 and

denote by Mα the preimage under pAα, for α ∈ p ∆. We say that

�

M→ pA≤1

�

∈H∞(
pA≤1)

is Laurent if Mα is a stack of finite type for all α ∈ p ∆ and if Mα is empty for α

outside a Laurent subset. Such a Laurent element gives an element of H( pA≤1)Λ

by considering
∑

αMα.

4.6.5 PROPOSITION – The elements 1pF≤1[1]
, 1OpF≤1[1]

are Laurent.
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Proof: Let F ∈ pF≤1 and let (γ ,δ, n) be the class in N≤1(Y) corresponding to [F[1]] =

−[F]. By [SGA6, Proposition X-1.1.2]we know that in the Grothendieck group F decom-

poses as

F =
∑

i

li [OCi
]+τ

where the Ci are the curves comprising the irreducible components of the support of

F (which is contained in the exceptional locus of f ), where li ≥ 0 and where τ is is

supported in dimension zero. From this decomposition we infer that γ = 0 and δ ≤ 0.

Finally, Riemann-Roch tells us that n is minus the Euler characteristic of F and Lemma

2.3.2 gives us that n ≥ 0. To conclude, the finite type axiom is deduced using Lemma 4.7.3,

combined with Lemma 4.5.1.

For 1OpF≤1[1]
, it is enough to notice that for F ∈ pF, H1(Y,F) is finite-dimensional. �

Notice also that by the remark above both 1pF≤1[1]
and 1OpF≤1[1]

are invertible in

H( pA≤1)Λ.

4.6.6 PROPOSITION – The element pH ≤1 is Laurent.

Proof: By [Bri02, Theorem 5.5] if we fix a numerical class α ∈ N≤1(Y) then the space

pHilbY/X(α) is of finite type (it is in fact a projective scheme). Thus we are left with

checking the second half of the Laurent property. Fix then a class γ ∈N1(X) and consider

a possible quotient OY� P in pA, with dimsuppP≤ 1 and with P of class (γ ,δ, n). We

need to show that there exists a lower bound on the possible values of n. By pushing

down to X we obtain a quotient (in Coh(X)) OX � Rf∗P, and we note that the sheaf

Rf∗P is of class (γ , n). If a class γ is fixed, it is known that the possible values of the Euler

characteristic of a quotient OX �Q are bounded below (this follows from boundedness

of the Hilbert scheme), hence we have the required bound.

To proceed, we let γ and n both be fixed and notice that we only really need to

focus on exact sequences of both coherent and perverse sheaves, that is on points of

HilbY∩pHilb≤1(Y/X) (which we temporarily denote by Pilb(Y)). This is a consequence



4.6 L AU R E N T E L E M E N T S 80

of the fact that given a quotient OY� P in pA, with P of class (γ ,δ, n), we can consider

the torsion torsion-free exact sequence

F[1] ,→ P�T.

In fact, F[1] does not contribute towards γ , contributes negatively towards δ and pos-

itively towards n, as seen in the previous proposition. Thus we just need to study the

possible classes of T. Finally, OY� P�T is a quotient in pA but glancing at the cohomo-

logy sheaves long exact sequence tells us that it is indeed a quotient in A as well. Thus we

only need to check that, having chosen a γ and an n, there exists an upper bound δ0 such

that PilbY(γ ,δ, n) is empty for δ ≥ δ0.

Notice that the pushforward induces a morphism from pHilb(Y/X) to Hilb(X). We

consider its restriction to Pilb(Y). We would like for the pullback functor to induce a

morphism going in the opposite direction. A flat family of sheaves on X might, however,

cease to be flat once pulled back on Y. To remedy we impose this condition by hand. We

define a subfunctor FilbX of HilbX by the rule

FilbX(S) =
¦

OXS
�G

�

�

�G, f ∗S G flat over S
©

.

If U is the structure sheaf of the universal subscheme for Hilb(X) on X×Hilb(X) then

one can see that Filb(X) is represented by the flattening stratification of Hilb(X) with

respect to f ∗
Hilb(X)

U. From this we deduce that if we fix a numerical class (γ , n) on X then

FilbX(γ , n) is of finite type.

We claim that the composition of pushing forward and pulling up as just described,

Pilb(Y)→ Filb(X)→ Pilb(Y), is the identity. Let us see first why this is true on geomet-

ric points. Take an exact sequence of both coherent and perverse sheaves

I ,→OY� E.
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Applying the counit of the adjunction f ∗ a f∗ (and using the fact that the objects above

are both sheaves and perverse sheaves) we obtain a commutative diagram

f ∗ f∗I OY f ∗ f∗E 0

0 I OY E 0

id

with exact rows. By [Bri02, Proposition 5.1] we have that f ∗ f∗I→ I is surjective and so,

by a simple diagram chase, f ∗ f∗E→ E is an isomorphism. This argument indeed works

in families, as surjectivity can be checked fibrewise.

Finally, let us fix a γ and an n and let PilbY(γ , n) be the subspace of Pilb(Y) where

we’ve fixed γ and n but we letδ vary. By the previous arguments we know that PilbY(γ , n)→

FilbX(γ , n) → PilbY(γ , n) composes to the identity. As the retract of a quasi-compact

space is quasi-compact9 we obtain that PilbY(γ , n) is of finite type, which is enough to

conclude. �

4.6.7 PROPOSITION – The elementH≤1 is Laurent.

Proof: It is a known fact that for a fixed numerical class α ∈N≤1(Y) the scheme HilbY(α)

is of finite type (it is in fact a projective scheme). To prove the second half of the Laurent

property we start by fixing a class γ ∈N1(X). If OY�T is a quotient in A with kernel I,

we have an exact sequence

0→ f∗I→OX→ f∗T→R1 f∗I→ 0.

If T is of class (γ ,δ, n) then f∗T is of class (γ , n) and R1 f∗I is supported in dimension

zero. The image Q of OX → f∗T is of class (γ , m) with m ≤ n. As γ is fixed we have a

lower bound on the possible values of m and a fortiori on the values of n.

9 If A→ B→ A composes to the identity, one can start with an open cover {Ai} and pull it back
to a cover {Bi} of B. Pick a finite subcover {B j } and pull it back to A. This is a finite subcover of
{Ai}.
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Let now γ and n be fixed. We start off with the identity

pH ≤1 ∗1pF≤1[1]
= 1OpF≤1[1]

∗H≤1

in H∞(
pA≤1). By directly applying our definition of ∗ we see that the right hand side is

represented by a morphism [W→ pA≤1], given by the top row of the following diagram.

W pA
(2)
≤1

pA≤1

pF≤1[1]
O×HilbY,≤1

pA≤1× pA≤1

b

(a1,a2)

Similarly, the left hand side is represented by a morphism [Z → pA≤1]. The main tool

we use for the proof is the cover {pAα}α of pA≤1, with α ∈ p ∆ ranging inside the cone of

perverse coherent sheaves.

By taking preimages through b we obtain an open cover {Uα}α of pA
(2)
≤1 . Concretely,

Uα parameterises exact sequences P1 ,→ P� P2 in pA≤1 with P of class α.

On the other hand, we can cover pA≤1× pA≤1 by taking products pAα1
× pAα2

. By

pulling back via (a1,a2) we produce an open cover {Uα1,α2
}α1,α2

of pA
(2)
≤1 . The space Uα1,α2

parameterises exact sequences P1 ,→ P� P2 in pA≤1 with P1 of class α1 and P2 of class α2.

Notice that the collection {Uα1,α2
}α1+α2=α

is an open cover of Uα.

By pulling back these covers of pA
(2)
≤1 we obtain open covers {Wα}α and {Wα1,α2

}α1,α2

of W. The same can be done for Z.

We remind ourselves that we think of a class α as a triple (γ ,δ, n). If we fix a γ and

an n, it is a consequence of pH ≤1 ∗ 1pF≤1[1]
being Laurent that there exists a δ ′ such that

Z(γ ,δ,n) = ; for δ ≥ δ ′. Because of the identity above, the same holds for W(γ ,δ,n).

What we need to prove is that, once we fix γ and n2, the space HilbY(γ ,δ2, n2) is empty

for large δ2. Fix δ1, n1 such that pF≤1[1]
O

(0,δ1,n1)
6= ;. The space representing the product

1OpF≤1[1](0,δ1,n1)
∗HilbY(γ ,δ2, n2)
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is W(0,δ1,n1),(γ ,δ2,n2)
⊂W(γ ,δ1+δ2,n1+n2)

. We have already remarked that for fixed γ , n1, n2

we have an upper boundδ ′ such that W(γ ,δ1+δ2,n1+n2)
= ; forδ1+δ2 ≥ δ ′. As pF≤1[1]

O

(0,δ1,n1)
6=

;, we conclude that HilbY(γ ,δ2, n2) = ; for δ2 ≥ δ ′−δ1, in particular the same is true

for δ2 ≥ 0. �

Remark 4.6.8. We need to interpret Proposition 4.5.2 in the Laurent setting. Dual-

ity D′ acts on N≤1(Y) by taking a class (γ ,δ, n) to (−γ ,−δ, n). Even more con-

cretely, an element T ∈ qT• of class (0,δ, n) is sent to an element D′(T) ∈ pF≤1 of

class (0,−δ, n). This suggests that we should complete the algebra H(qT•) with

respect to a sort of dual Laurent subsets.

Let q ∆exc be the subcone of q ∆ consisting of elements of the form (0,δ, n), with

n ≥ 0. We define Λ′ as the collection of subsets L⊂ q ∆exc such that:

• for all n ∈ Z, there exists δ(n) ∈ E such that for all δ, with (0,δ, n) ∈ L,

δ ≥ δ(n).

We can complete the algebra H(qT•) with respect to Λ′, just as we complete the

Hall algebra of perverse coherent sheaves with respect to Λ. We denote this com-

pletion by H(qT•)Λ′ .

The elements 1qT•
and 1OqT•

belong H(qT•)Λ′ by Proposition 4.6.5 and duality.

The elementH #
exc also belongs to H(qT•)Λ′ by running a similar proof to the one

above, using (4.4.2). Proposition 4.5.2 now implies D′ defines an isomorphism

between H(qT•)Λ′ and H( pF≤1[1])Λ, taking 1qT•
to 1pF≤1[1]

and 1OqT•
to 1OpF≤1[1]

.

Going back to H( pA≤1)Λ, the remark above implies the identity

pH ≤1 = 1pF≤1[1]
∗D′(H #

exc) ∗H≤1 ∗1−1
pF[1]≤1

. (4.6.9)

What keeps us from simply applying the integration morphism IΛ is that, al-

though D′(H #
exc) andH≤1 are regular, 1pF≤1[1]

is not.
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4.7 A S TA B I L I T Y C O N D I T I O N

We want to proceed analogously as in [Bri11, Section 6.3], proving that

IΛ(
pH≤1) = IΛ(D

′(H #
exc)) · IΛ(H≤1)

holds nevertheless. The key is to show that (L− 1) · log(1pF≤1[1]
) ∈ Hreg(

pA).

This can be achieved by constructing an appropriate stability condition such that

pF≤1[1] manifests as the set of objects of some fixed slope. For convenience we

work within the category pAexc, whose objects are those perverse coherent sheaves

P ∈ pA≤1 whose pushforward to X is supported on points (in other words such a

P is of class (0,δ, n), for some δ ∈ N1(Y/X) and n ∈ Z). We define a stability

condition µ, taking values in the ordered set {1,2} as follows.

(0,δ, n) 7−→











1 if δ ≥ 0

2 if δ < 0.

It is immediate that µ is indeed a weak stability condition (in the sense of [JS08,

Definition 3.5]), as the only axiom one needs to check is the (weak) see-saw prop-

erty.

4.7.1 LEMMA – The set of µ-semistable objects of slope µ= 2 is pF≤1[1]. The set

of µ-semistable objects with µ= 1 is pTexc.

Recall that an object P is said to be semistable if for all proper subobjects P′ ⊂ P

we have µ(P′)≤µ(P/P′).
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Proof: Let P be any semistable perverse coherent sheaf. Consider the torsion torsion-free

exact sequence

F[1] ,→ P�T.

If F[1] 6= 0 and T 6= 0 then, by semistability, 2 = µ(F[1])≤µ(T) = 1 which is impossible.

Thus a semistable object must be either torsion or torsion-free.

On the other hand, as pF≤1[1] is stable under quotients and pTexc is stable under subob-

jects we conclude. �

The last property we need is permissibility, in the sense of [Joy07, Definition

4.7].

4.7.2 PROPOSITION – The stability condition µ is permissible.

Proof: The first fact we check is that the category pAexc is noetherian. More generally,

this follows from Noetherianness of pA. The latter can be seen as a consequence of

[Ber04], as pA is equivalent to the category of finitely generated modules over a noeth-

erian coherent OX-algebra.

Now we want to check that if P ∈ pAexc and [P] = 0 in N≤1(Y) then P = 0. By pushing

forward via f we have that [Rf∗P] = 0 and as Rf∗P ∈ Coh(X) it follows that Rf∗P = 0.

Now, from Leray’s spectral sequence we obtain that f∗H
−1(P) = f∗H

0(P) = 0. Thus, if

p = −1, P = H−1(P)[1] and, if p = 0, P = H0(P). In either case we reduce to dealing

with a coherent sheaf and so P = 0.

Let now pAα(i) be the subset of pAexc(C) consisting of perverse coherent sheaves

which are of numerical class α and semistable with µ = i . We now check that these

subsets are constructible.

In light of Lemma 4.5.1 and Lemma 4.7.1, what remains to be proved is that, given a δ

and an n, the stack pT(0,δ,n) is of finite type. This is the content of the following lemma.
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To finish, we show that µ is artinian. Consider a chain of subobjects

· · · ,→ P2 ,→ P1

with µ(Pn+1) ≥ µ(Pn/Pn+1). Let P′ ,→ P be any two consecutive elements in the chain

above and let Q be the quotient P′/P so that we have an exact sequence

P′ ,→ P�Q

with µ(P′)≥µ(Q), which corresponds to the relation (δ ′, n′)+(δq , nq) = (δ, n) in p ∆.

As the sheaves we are considering have support contracted by f we see that n, n′, nq ≥ 0

hence we can assume (by going further down the chain if necessary) that n = n′, which

in turn implies nq = 0.

When p = −1, this implies that Q ∈ pF≤1[1] and µ(Q) = 2. As a consequence, we

have µ(P′) = µ(P) = 2 and so δ,δ ′ < 0. Finally, as δ ′ ≥ δ, we can assume δ ′ = δ and

so δq = 0, from which we gather that Q = 0, which concludes the proof.

When p = 0, the condition nq = 0 implies Q ∈ pTexc. Glancing at the cohomology

sheaves long exact sequence we see that P′→ P is an isomorphism on H−1 and an injection

on H0. If we denote δ0 = ch2(H
−1(P)), we see that δ0 ≤ δ ′ ≤ δ. Thus, again by

descending further down the chain if necessary, we can assume δ = δ ′ and we are done.

�

4.7.3 LEMMA – Let δ ∈N1(Y/X) and let n ∈Z. Then, the stack pT(0,δ,n) is of

finite type.

Proof: We can use the criterion found for example in [HL10, Lemma 1.7.6]. Let S be a

finite type scheme and let T ∈ Coh(S×Y) be a flat family of sheaves such that for any

closed point s ∈ S the restriction to the fibre Ts lies in pTexc and is of class (0,δ, n). We

show that there exists a sheaf surjecting onto all the Ts . It is sufficient to prove that Ts is

generated by global sections, as then the sheaf H0(Y,Ts )⊗C OY will surject onto Ts and

dim H0(Y,Ts ) = n is independent of s .
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Let I and C be respectively the image and the cokernel of the evaluation morphism

H0(Y,Ts )⊗C OY → Ts . The sheaf I belongs to pT and together with the exact sequence

I ,→Ts �C we have

f∗I ,→ f∗Ts � f∗C.

As f∗Ts is supported on points, the morphism H0(X, f∗Ts )⊗C OX → f∗Ts is surjective,

which (by adjunction) implies that f∗I → f∗Ts is surjective, which by the above exact

sequence implies that f∗C = 0. As R1 f∗C = 0 as well, by the properties of perverse

coherent sheaves it follows that Ts → C is the zero morphism, which in turn implies

C = 0. Hence the claim. �

4.7.4 PROPOSITION – In H( pA≤1)Λ we have 1pF≤1[1]
= exp(ε), with η = (L−

1) ·ε ∈Hreg(
pA≤1)Λ a regular element. Furthermore the automorphism

Ad1pF≤1[1]
: H( pA≤1)Λ −→H( pA≤1)Λ

preserves regular elements. The induced Poisson automorphism of Hsc(
pA≤1)Λ

is given by

Ad1pF≤1[1]
= exp{η,−}.

Proof: We can draw an argument entirely parallel to the one in Theorem 6.3 and Corol-

lary 6.4 of [Bri11]. The only thing to check here is that the class [C∗] · log(1pF≤1[1]
) is a

regular element, which can be done in the subalgebra H( pAexc)Λ, exploiting the stability

condition we just described. �
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4.8 M A I N I D E N T I T Y

At last, we have all the ingredients to prove our main result. Before we proceed,

we must deal with an issue of signs.

The Hilbert scheme HilbY(β, n) comes with two constructible functions which

are of interest to us. The first (ν) is Behrend’s microlocal function. The second

(µ) is the pullback along HilbY(β, n)→ A of the Behrend function of the stack

A. Given a homology class β and an integer n, the DT number of class (β, n) is

defined to be

DTY(β, n) := χν (HilbY(β, n)) :=
∑

k∈Z

kχtop(ν
−1(k))

where χtop is the topological Euler characteristic. We package all these numbers

into a generating series

DT(Y) =
∑

β,n

DTY(β, n)q (β,n)

which can be interpreted as a Laurent series according to our definition. As we

work with the integration morphism, it is convenient for us to define a variant of

the DT series:

DT(Y) := IΛ(H≤1).

Unpacking the definitions, we see that, if we write

DTY(β, n) := χµ (HilbY(β, n)) :=
∑

k∈Z

kχtop(µ
−1(k))
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then

IΛ

�

H≤1

�

= DT(Y) =
∑

β,n

DTY(β, n)q (β,n).

Remark 4.8.1. It is shown in [Bri11, Theorem 3.1] that there is a simple relation-

ship between DT and DT, given as follows.

DTY(β, n) = (−1)n DTY(β, n)

We pause a moment to notice that on Hilb(Y), not only do we have the pull-

back of the Behrend function of A, but also the pullback of the Behrend function

of pA. However, no ambiguity arises, as the two morphisms factor through pT,

which is open in both A and pA.

Proceeding analogously as above, we define the perverse DT series as

pDT(Y/X) := IΛ(
pH≤1)

which can be seen as a sum of perverse DT numbers

pDT(Y/X) =
∑

β,n

pDTY/X(β, n)q (β,n)

where

pDTY/X(β, n) := χµ
�

pHilbY/X(β, n)
�

.

For the purpose of this thesis, however, we needn’t be concerned with comparing

χµ(
pHilbY/X(β, n)) with χν(

pHilbY/X(β, n)).
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Remark 4.8.2. We point out that the identities we write down below should be

interpreted as taking place in the algebra Qσ [
p ∆]Λ, defined in Section 4.6.

We introduce the following sums,

DT0(Y) :=
∑

n∈Z

DTY(0, n)q (0,n)

DTexc(Y) :=
∑

β,n
f∗β=0

DTY(β, n)q (β,n)

DT∨exc(Y) :=
∑

β,n
f∗β=0

DTY(−β, n)q (β,n)

and their DT analogues.

4.8.3 THEOREM – Assume to be working in Situation 2.3.1. The following iden-

tity holds.

pDT(Y/X) =
DT∨exc(Y) ·DT(Y)

DT0(Y)
(4.8.4)

Proof: The Poisson bracket on Qσ [
p ∆] is trivial, so Proposition 4.7.4, together with

(4.6.9), yields the identity

IΛ(
pH≤1) = IΛ(D

′(H #
exc)) · IΛ(H≤1).

The left hand side is equal to pDT(Y/X) and IΛ(H≤1) = DT(Y). As remarked in Section

4.1, [Bri11, Lemma 5.5 and Theorem 1.1] tell us howH # is related to DT invariants. In

fact, combining these with Remark 4.6.8 we see that

IΛ(D
′(H #

exc)) =
DT∨exc(Y)

DT0(Y)

and hence the claim. �
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Notice that, as we are working with the assumption of Remark 2.3.6, the The-

orem above holds for both perversities, hence the series pDT(Y/X) is independ-

ent of the perversity p. We will therefore drop the superscript p.

4.9 C O N C LU S I O N

Now that we understand how the category of perverse coherent sheaves relates

to DT invariants we can prove our promised formula for flops.

Situation 4.9.1

Recall Situation 2.3.1 and assume moreover f : Y→ X to be an isomorphism

in codimension one. Let f + : Y+→X be the flop of f .

Y Y+

X

f f +

Notice that with these additional assumptions it follows automatically that pF =

pF≤1 (for p =−1,0).

Following [Bri02], we know that the variety Y+ can be constructed as the

moduli space of point-like objects of −1Per(Y/X) = −1A, the category of per-

verse coherent sheaves with minus one perversity. The pair (Y+, f +) satisfies

the same assumptions as (Y, f ), so the categories of perverse coherent sheaves

qPer(Y+/X) = qA+ (for q = −1,0) make sense as well. Moreover, Bridgeland

proved that there is a derived equivalence Φ (with inverse Ψ) between Y and Y+

restricting to an equivalence

Φ : −1A+� 0A :Ψ
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which is the key to transport DT invariants from one side of the flop to the other.

The following lemma will be useful.

4.9.2 LEMMA – Assume to be working in Situation 4.9.1, then Φ(OY+) = OY.

Proof: First of all, it is shown in [Bri02, (4.4)] that the equivalence Φ commutes with

pushing down to X. The object Φ(OY+) =: L is a line bundle as, for any closed point

y ∈Y, the complex

RHomY(Φ(OY+),Oy) = RHomY+(OY+ , Ψ(Oy)) = RHomX(OX,R f +
∗ Ψ(Oy)) = RHomX(OX,Rf∗Oy)

is concentrated in degree zero and has dimension one. The bundle L pushes down to

the structure sheaf, R f∗L = OX. By adjunction, morphisms OX → R f∗L correspond to

morphisms OY → L, so that we deduce the existence of a non-zero section of L. Using

Grothendieck duality for f , we see that R f∗L
∨ = R f∗RHom(L, f !OX) = (R f∗L)

∨ = OX,

hence L∨ has a non-zero section as well. As Y is proper and integral, it follows that

L = Φ(OY+) must be the structure sheaf OY. �

Gathering all the results so far, the only task left to accomplish is to compare

the generating series for the perverse DT invariants on both sides of the flop:

DT(Y/X), DT(Y+/X).

The functor Φ induces an isomorphism between the numerical K-groups of Y

and Y+, which restricts to an isomorphism

φ : N≤1(Y
+)�N≤1(Y) :ψ.

We can sharpen this result, by noticing that a class (β, n) ∈ N≤1(Y
+) is sent to

(ϕ(β), n), where ϕ can be described as follows. The smooth locus U of X is a

common open subset of both Y and Y+. By the Gysin exact sequence, we have an

identification between the numerical groups of divisors of Y and Y+, via pulling
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back to U. The inverse of the transpose of this identification is precisely ϕ, as the

equivalence Φ restricts to the identity on U.

As the Fourier-Mukai equivalence Φ is an exact functor, and in light of Lemma

4.9.2, we deduce an isomorphism of perverse Hilbert schemes −1Hilb(Y+/X) '
0Hilb(Y/X). We can sharpen this result by noticing that, for a class (β, n) ∈

N1(Y
+)⊕Z, we have

−1HilbY+/X(β, n)' 0HilbY/X(ϕ(β), n).

Taking weighted Euler characteristics and summing over allβ’s and n’s we obtain

∑

β,n

DTY+/X(β, n)q (β,n) =
∑

β,n

DTY/X(ϕ(β), n)q (β,n)

which can be rephrased as a theorem.

4.9.3 THEOREM – Assume to be working in Situation 4.9.1. Then, identifying

variables via φ, the following identity holds.

DT(Y+/X) = DT(Y/X)

The identity (Æ) promised in the overview chapter now follows.

4.9.4 COROLLARY – The following identity holds.

DT∨exc(Y
+)DT(Y+) = DT∨exc(Y)DT(Y)
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Concretely, for a class β = (γ ,δ) ∈ N1(X)⊕N1(Y/X) and an integer n we

have

∑

δ1+δ2=δ
n1+n2=n

DTY+(0,−δ1, n1)DTY+(γ ,δ2, n2)−DTY(0,−ϕ(δ1), n1)DTY(γ ,ϕ(δ2), n2) = 0.

Proof: The hard work is done, as we already have Theorem 4.8.3. To prove this last

identity we first observe that DT0(Y) is an expression depending only on the topological

Euler characteristic of Y [BF08]. A result of Batyrev [Bat99] tells us that χtop(Y) =

χtop(Y
+), so that the combination of Theorem 4.9.3, Theorem 4.8.3 and Remark 4.8.1

imply the desired identity. �



5
C R E PA N T R E S O LU T I O N C O N J E C T U R E

In this chapter we present our proof of the projective case of the Crepant Res-

olution Conjecture for Donaldson-Thomas invariants, as stated in [BCY12, Con-

jectures 1 & 2].

5.1 T H E E Q U I VA L E N C E B E T W E E N Per(Y/X) A N D Coh(X)

We work in the following setup.

Situation 5.1.1

Let X be a smooth, quasi-projective, Deligne-Mumford stack of dimension n.

Assume the canonical bundle ωX to be Zariski-locally trivial and denote by X

the coarse moduli space of X.

Remark 5.1.2. The bundleωX on X is Zariski-locally trivial if there exists a Zariski

open cover X′ → X (where we allow X′ to be a stack) such that the restriction

ωX|X′ is trivial. This is a technical condition which, by working locally on the

coarse space X, allows us to reduce to the setting of [BKR01]. In fact, in the case

where X = [V/G], it amounts to requiring that the canonical bundle of V be

G-equivariantly locally trivial. This condition seems to be missing in [CT08].

It is beneficial to recall the framework of [CT08]. A candidate for a resolution

of X (and a replacement for the equivariant Hilbert scheme found in [BKR01])

is given by the irreducible component Y of the Hilbert scheme Hilb(X) contain-

95
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ing the non-stacky points of X.1 The morphism g : X→ X induces a morphism

f : Y→X and we draw a diagram.

Y×X

Y X

X

f g

πY πX

Under the additional assumption that Y×X Y is at most of dimension n + 1 it is

proved in [CT08] that Y is smooth and that f is a crepant resolution. Further-

more, the scheme Y represents a moduli functor and its corresponding universal

object is a quotient OY×X�OZ. Finally, it is shown that one has a Fourier-Mukai

equivalence D(Y)' D(X) with kernel given by OZ.

We recall three key results involved in the proof: the Hilbert scheme Hilb(X)

commutes with étale base-change on X [CT08, Proposition 2.3]; étale-locally on

X the space X is isomorphic to a quotient stack [V/G], with V smooth and affine

and G a finite group (whose coarse space is thus the quotient V/G) [AV02, Lemma

2.2.3]; the Hilbert scheme of [V/G] is isomorphic to Nakamura’s G-equivariant

Hilbert scheme G-Hilb(V) [CT08, Lemma 2.2]. Exploiting these facts one may

reduce to [BKR01], as checking that the given kernel produces an equivalence may

be done locally [CT08, Proposition 3.3].

Remark 5.1.3. As is usual with integral transforms, the kernel OZ may be inter-

preted as giving a functor in two different directions. The standard Mukai-implies-

McKay convention is to take OZ to define a functor Φ : D(Y)→ D(X) [BKR01;

CT08]. To deal with a technical issue (caused by the previous chapter), we will

1 It is probably helpful to remark that for a stack X there might be some ambiguity in the term Hil-
bert scheme (see [Ryd11]). However, we shall always interpret Hilbert schemes as Quot functors,
which for Deligne-Mumford stacks were studied by Olsson and Starr [OS03].
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also consider Φ̂ = DΦD : D(Y)→ D(X), where D = RHom(−,O) is the dual-

ity functor. We denote by Ψ the inverse of Φ and by Ψ̂ the inverse of Φ̂. When

Y and X are projective, the relationship between Φ and Φ̂ is quite simple, as Ψ̂

is given by the Fourier-Mukai transform with kernel OZ (this is a standard con-

sequence of [BBHR09, Propositions 1.13 and 1.15]).

It is in some sense a reflection of the ambiguity revolving around the kernel OZ

that we consider perverse coherent sheaves of both perversities: pPer(Y/X), with

p =−1,0.

The rest of this section is devoted to the proof of the following statement.

5.1.4 THEOREM – Assume to be working in Situation 5.1.1 and assume in addi-

tion f to have relative dimension at most one. Then the equivalence Φ between

D(Y) and D(X) restricts to an equivalence of abelian categories between 0Per(Y/X)

and Coh(X), while the equivalence Φ̂ restricts to an equivalence between −1Per(Y/X)

and Coh(X).

Remark 5.1.5. Notice that the condition dimY×X Y ≤ n + 1 follows automatic-

ally from the condition on the fibres of f .

In particular 0Per(Y/X) is equivalent to −1Per(Y/X). We also point out that

the composition Φ̂Φ−1 gives a non-trivial autoequivalence of D(X), which seems

related to the window shifts of Donovan-Segal [DS12]. It might be worthwhile to

compute this equivalence in explicit examples.

Let us now begin the proof of the theorem, which will be divided into small

steps. We start by considering Φ.

S T E P 1 Given an object of the derived category, membership of either of

the categories in question can be checked étale-locally on X [Ber04, Proposition

3.1.6]. Thus, by base-changing over étale patches of X, we can reduce to the case
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where X is affine and furthermore X= [V/G] with V a smooth affine scheme and

G finite. Moreover, the functors Φ and Ψ (being Fourier-Mukai) commute with

this base-change [BBHR09, Proposition 6.1].

S T E P 2 It suffices to prove Ψ(Coh(X)) ⊂ 0Per(Y/X). In fact, an inclusion

A ⊂ A′ of two hearts of bounded t-structures in a triangulated category is ne-

cessarily an equality (it is a consequence of the uniqueness of the cohomological

filtrations).

S T E P 3 To prove the mentioned inclusion we will exhibit two systems of

generators (see definition below), one for 0Per(Y/X) and one for Coh(X), and

show that elements of the first system are sent to the second.

5.1.6 DEFINITION – Let D be a triangulated category and let A be the heart of

a bounded t-structure. A collection P of objects of A is a system of projective

generators if, for all A ∈ A \ {0} and all P ∈ P , Ext•D(P,A) is concentrated in

degree zero and for all A ∈A there exists PA ∈P such that HomD(PA,A) 6= 0.

By [Ber04, Lemma 3.2.4], when X is affine, we have a system of generators P

for 0Per(Y/X) consisting of vector bundles P such that

• R1 f∗P = 0,

• P∨ is generated by global sections.

For Coh(X) we also have a nice system of generators.

5.1.7 LEMMA – The collectionQ of vector bundles on X is a system of generators

for Coh(X).

Proof: As we are working in the case X = [V/G], it is easy to reduce the problem to

bundles on V. In fact, coherent sheaves on X are G-equivariant coherent sheaves on V.
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Given an equivariant vector bundle P and an equivariant sheaf E on V we have that

G-Exti
V(P,E) = Exti

V(P,E)G, where the latter is the G-invariant part [BKR01, Section

4.1]. As V is affine, these groups vanish for i > 0.

Fix now an equivariant sheaf E, we want to find an equivariant vector bundle P such

that HomV(P,E)G 6= 0. By [BKR01, Lemma 4.1] HomV(P,E) splits as a direct sum of

HomV(P⊗ρ,F)G⊗ρ, where ρ ranges among the irreducible representations of G. The

claim thus follows as P⊗ρ is a vector bundle. �

S T E P 4 We now conclude the proof by showing that elements of P are sent

to elements of Q. First we remark that we can check whether a complex on

X= [V/G] is a vector bundle by pulling back to the étale atlas V→ [V/G]. Thus,

if P ∈P , we are interested in the pullback of Φ(P) to V. This allows us to reduce

to the setup of [BKR01], where one has the following diagram.

Z

Y×V

Y V

X

p q
i

πY πV

f g

Here Z is the universal G-cluster for the action of G on V, q and f are proper and

birational, p and g are finite and p is also flat. Moreover, the quotient OY×V�OZ

is precisely the pullback, under the morphism Y×V→ Y× [V/G] = Y×X, of

the universal quotient OY×X � OZ, which we used to define Φ. It follows that

applying Φ followed by pulling back to V is the same as applying Rq∗ p∗.
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We have thus reduced our final step to checking that, given an element P ∈ P ,

the complex Rq∗ p∗P is actually a vector bundle.

5.1.8 LEMMA – Let P ∈Coh(Y) satisfy R1 f∗P = 0. Then Rq∗ p∗P ∈Coh(X).

Proof: Notice that Rq∗ p∗P = RπV,∗i∗ p∗P = RπV,∗(π
∗
YP⊗OZ), where we made the

standard identification OZ = i∗OZ. We point out that, as a consequence of our assumption

on f , πV,∗ is of homological dimension at most one (we remind the reader that we work

under the reduction done in the Step 1, in particular X is affine).

By tensoring the quotient OY×V � OZ with π∗YP we produce a surjection π∗YP �

π∗YP⊗OZ. Applying πV,∗ yields a surjection R1πV,∗π
∗
YP � R1πV,∗(π

∗
YP⊗OZ). But

R1πV,∗π
∗
YP = H1(Y,P)⊗C OV and H1(Y,P) = 0 as R1 f∗P = 0, hence the claim. �

5.1.9 LEMMA – Let P ∈P , then Rq∗ p∗P is a vector bundle on V.

Proof: We know that the dual of P is generated by global sections, hence there exists a

short exact sequence

K ,→O⊕m
Y � P∨.

From the fact that P and OY are vector bundles it follows that K is also a vector bundle.

We therefore have a dual sequence

P ,→O⊕m
Y �K∨.

It follows from the previous lemma, plus the fact that q∗OZ = OV, that applying Rq∗ p∗

yields an exact sequence

q∗ p∗P ,→O⊕m
V � q∗ p∗K∨.
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To prove our claim it suffices to check that Ext1
V(q∗ p∗P,M) = 0 for all modules M on V.

By the above short exact sequence this is the same as showing that Ext2
V(q∗ p∗K∨,M) = 0

for all modules M. Using Grothendieck duality [Har66; Lip09] for q we have

Ext2
V(q∗ p∗K∨,M) = Ext2

Z(p∗K∨, q !M)

= H2(Z, p∗K⊗ q !M).

The scheme Z admits a finite and flat map to a smooth variety ( f : Z → Y) thus it is

Cohen-Macaulay. Moreover, as dimZ− dimV = 0 and q is of finite tor-dimension, the

complex q !M is concentrated in non-positive degrees. As our assumption on f implies

that Hi (Z,E) = 0 for all i > 1 and all sheaves E, the hypercohomology spectral sequence

tells us that H2(Z, p∗K⊗ q !M) = 0. Hence we are done. �

The previous lemma concludes the first half of the proof. As is often the case,

the second half is much shorter than the first. In fact, to prove the statement for

−1Per(Y/X) and Φ, one need only notice the following:

• Φ̂ = DΦD,

• the dual systemP ∨ = DP is a system of generators for −1Per(Y/X) [Ber04,

p. 3.2.3],

• the systemQ is self-dual DQ =Q.

This concludes the proof and we can now move on to comparing the DT invari-

ants of X and Y.

Remark 5.1.10. For the next section, it will be important to know that Φ(OY) =

OX. We already know that Φ(OY) is a vector bundle given by Rq∗OZ. By restrict-

ing to the smooth locus of X (viz. to an open where Φ is the identity) we see

that Rq∗OZ is in fact a line bundle. In turn this implies that Φ(OY) = OX as the
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unit OX→Rq∗q
∗OX is an isomorphism. The same statement obviously holds for

Φ̂ = DΦD as well.

Remark 5.1.11. It can be useful to know that when Y and X are projective the

equivalences described above commute with pushing down to X. For example, let

us check that g∗Φ = R f∗. We have g∗Φ = R f∗R p∗ p∗. If we proved that Rp∗OZ =

OY, then by the projection formula we would be done. Thankfully, the previous

remark together with Remark 5.1.3 already tell us that R p∗OZ = Ψ(X) = OY.

5.2 T H E F O R M U L A F O R D T I N VA R I A N T S

We now impose further restrictions on our spaces.

Situation 5.2.1

Recall Situation 5.1.1 and assume in addition X to be projective and of di-

mension three. Assume moreover X to be Calabi-Yau, i.e. ωX
∼= OX and

H1(X,OX) = 0. Finally, assume the crepant resolution f : Y→X of the previ-

ous section to have relative dimension at most one.

Remark 5.2.2. We follow the convention where a Deligne-Mumford stack is pro-

jective if its coarse moduli space is. From the assumptions above it follows that X

is of dimension three, projective, Gorenstein with quotient singularities and with

trivial canonical bundle. In turn it follows that Y is Calabi-Yau of dimension three

and that X has rational singularities, and so R f∗OY = OX [Kov00].

As the functor Φ is more natural from the perspective of the McKay correspond-

ence we shall focus on the zero perversity.

Notation. We will drop the superscript 0 from 0Per(Y/X) =: Per(Y/X).
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Let us recall some definitions we gave earlier. We denote by N(Y) the numer-

ical K-group of coherent sheaves of Y. We remind ourselves that we can define a

bilinear form on K0(Coh(Y))

χ (E,F) :=
∑

k

(−1)k dimC Extk
Y(E,F)

and that N(Y) is obtained by quotienting out its radical. Inside N(Y) we can

single out F1N(Y), which is the subgroup generated by sheaves supported in di-

mensions at most one. We also define FexcN(Y) to be the subgroup of F1N(Y)

spanned by sheaves with derived pushforward to X supported in dimension zero.

To Y one can also attach the numerical Chow groups N∗(Y), which are the

groups of cycles modulo numerical equivalence. We write N≤1(Y) := N1(Y)⊕

N0(Y) and recall that N0(Y) ∼= Z. In [Bri11, Lemma 2.2] it is shown that the

Chern character induces an isomorphism F1N(Y) ∼= N≤1(Y) ∼= N1(Y)⊕Z,

which allows us to pass from one group to the other. Using this identification,

FexcN(Y) can be rewritten as

FexcN(Y) = {(β, n) ∈N1(Y)⊕Z | f∗β= 0}

where f∗ here stands for the proper pushforward on cycles (the subscript exc is

short for exceptional).

For the orbifold X we can also define a numerical K-group N(X). Inside it lies

F0N(X), the subgroup spanned by sheaves supported in dimension zero. The two

Fourier-Mukai functors

Φ : D(Y)� D(X) : Ψ
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induce an isomorphism on the level of numerical K-groups.

φ : N(Y)�N(X) :ψ

The group F0N(X) is sent isomorphically to FexcN(Y) viaψ and we define FmrN(X)

to be the image under φ of F1N(Y) (the subscript mr stands for multi-regular

[BCY12]). As it will be useful later, we analogously define F0N(Y) to be the

subgroup spanned by sheaves supported in dimension zero.

F0N(Y) FexcN(Y) F1N(Y)

F0N(X) FmrN(X) F1N(X)

⊂ ⊂

∼ ∼
⊂ ⊂

It is important now to duplicate Remark 4.8.1 and the discussion preceding it

for the orbifold X. We recall that DT invariants are defined using Behrend’s micro-

local function ν. However, from the previous chapter we know the importance

of also being able to work with a different constructible function. The Hilbert

scheme Hilb(X) admits a forgetful morphism to the stack of coherent sheaves on

X. We denote the pullback along this morphism of the Behrend function by µ.

As in Section 4.8, we define the DT number of class α, for α ∈ F1N(X), of X to be

DTX(α) = χtop (HilbX(α), ν)

and we also define the underlined analogue

DT
X
(α) = χtop (HilbX(α),µ) .

We package all these numbers into generating series DT(X), DT(X).
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Remark 5.2.3. Remark 4.8.1 remains valid for X, that is the following identity

holds

DT
X
(α) = (−1)χ (α) DTX(α).

To prove this, one can choose an appropriate divisor D on the coarse space X, and

its pullback to X plays the role of H in the proof of [Bri11, Theorem 3.1]. The

affine U can then be chosen to be an étale open in X, so that [Bri11, Lemma 3.2]

can be applied.

Passing over to Y now, recall that the structure sheaf OY belongs to the cat-

egory Per(Y/X) of perverse coherent sheaves. Given a class α ∈ F1N(Y), we

denote P-HilbY/X(α) the corresponding perverse Hilbert scheme parameterising

quotients of OY in Per(Y/X) of numerical class α. We can define a perverse DT

number of Y over X of class α as the weighted Euler characteristic

DTY/X(α) := χtop
�

P-HilbY/X(α),µ
�

where, again, µ is the pullback of the Behrend function of the stack of perverse

coherent sheaves on Y. We also collect these numbers into a partition function

DT(Y/X) :=
∑

α∈F1N(Y)

DTY/X(α)qα.

At this point, we should mention again Remark 4.8.2, which says that all the

identities we write down below take place in Qσ [
p∆]Λ.
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5.2.4 THEOREM – Assume to be working in Situation 5.2.1. The following for-

mula holds

DTmr(X) = DT(Y/X)

after an identification of variables via φ. In particular, for each α ∈ F1N(Y)

DTY/X(α) = DT
X
(φ(α)).

Proof: Form the previous section we know that the Fourier-Mukai equivalences Φ and

Ψ restrict to an equivalence of abelian categories between Per(Y/X) and Coh(X). Using

Remark 5.1.10, which tells us that Φ(OY) = OX, we have an induced isomorphism of

Quot functors (or Hilbert schemes), hence

HilbX(α)' P-HilbY/X(ψ(α)).

By definition ψ(FmrN(X)) = F1N(Y), from which the result for the generating series

follows. �

5.2.5 COROLLARY – Assume to be working in Situation 5.2.1 and recall the iden-

tification of variables from the previous theorem. The following formula is true

DTmr(X) =
DT∨exc(Y)DT(Y)

DT0(Y)
(5.2.6)

where

DT0(Y) :=
∑

n∈F0N(Y)

DTY(n)qn ,

DT∨exc :=
∑

(β,n)∈N1(Y)⊕Z

f∗β=0

DTY (−β, n)q (β,n).



5.2 T H E F O R M U L A F O R D T I N VA R I A N T S 107

Proof: First we notice that we can get rid of the underlines thanks to Remark 5.2.3.

From the previous theorem the statement we wish to prove is equivalent to proving that

DT(Y/X) is equal to the right hand side of (5.2.6) (modulo the underlines). What pre-

vents us from simply applying the formula (1.3.1) from the overview chapter is that in the

previous chapter the result is, strictly speaking, only proved for the minus one perversity.

Nonetheless, we can verify that the context we work in here satisfies the hypothesis

of Remark 2.3.6. The only thing to prove is that the stack of perverse coherent sheaves

is locally isomorphic to the stack of coherent sheaves (via an exact functor). However,

using the Fourier-Mukai equivalence Φ̂, we have that the stack parameterising objects in

0Per(Y/X) is isomorphic to the stack parameterising objects in −1Per(Y/X). As Φ̂ is also

an exact functor, all the constructions of the previous chapters go through and (1.3.1) does

indeed hold. �

Finally, we relate this Corollary with the Crepant Resolution Conjecture of

[BCY12].

5.2.7 COROLLARY – Once again, we assume to be working in Situation 5.2.1,

while also bearing in mind the identification of variables from the previous the-

orem. The following formulae hold.

DT0(X) =
DT∨exc(Y)DTexc(Y)

DT0(Y)

DTmr(X)

DT0(X)
=

DT(Y)

DTexc(Y)
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where

DT0(X) :=
∑

α∈F0N(X)

DTX(α)qα,

DTexc(Y) :=
∑

(β,n)∈N1(Y)⊕Z

f∗β=0

DTY(β, n)q (β,n).

Proof: As previously mentioned, ψ identifies F0N(X) with FexcN(Y), from which we

deduce the first identity. The second is obtained by combining the first identity with

(5.2.6). �
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