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OK, this is why I got a PhD.

Theorem (my advisor was Bridgeland) – If Y, W are two birational smooth and projective Calabi-Yau
threefolds (over C), then there is a precise relationship between their Donaldson-Thomas invariants.
Explicitly, if Y → X and W → X are related by a flop then we have a pretty formula like this.

DT(Y/X) = DT(W/X)

There is also a similar looking formula if we allow orbifolds, but I don’t think I’ll be able to get to
that. (this would be the setting of the McKay correspondence and goes by the name of the crepant
resolution conjecture) ∗
By the end of the seminar the statement will hopefully become clearer. The proof goes via derived

categories, so I guess I should say something about those as well.

Donaldson-Thomas Invariants

(good reference for this: Pandharipande-Thomas 13/2 ways to count curves) We want X to be a Calabi-
Yau threefold:

— smooth, connected, projective variety over C,

— ωX ≅ OX,

— H1(X,OX) = 0.

(the last one is equivalent to saying X has torsion fundamental group)
Enumerative geometry is popular these days. We might say that the point is to try and “count”

something about X. A lot of focus is on curves. The naive idea would be
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— take some moduli space MX of geometric objects attached to X,

— perhaps MX was defined from a larger moduli space by imposing additional constraints (like
tangency or stability conditions),

— if all went well, MX is a compact zero-dimensional variety and we count how many points it
has,

Invariant(X) = #MX = χtop(MX),

— in practice - this never happens.

What actually happens is

— the study of the deformation theory of MX yields a special homology class [MX]vir called
a virtual fundamental class (it’s not intrinsic to MX - work of Schürg showed a relationship
between virtual classes and the possible ways in which MX = π0(M̃), for a derived scheme M̃),

— not always, but sometimes, [MX]vir is a zero-cycle,

— integrating ∫[MX]vir
1 (or taking its degree) we obtain a number,

— we call this number the virtual count of whatever we were counting and call it a day.

Donaldson-Thomas theory begins with Richard Thomas’s thesis and has seen several extensions
and variants ( Joyce-Song, Kontsevich-Soibelman and others). The flavour we are interested in has to
do with counting curves.
Before DT theory came Gromov-Witten theory. In GW one “counts” maps

C→ X

where C is a nice (at worst nodal) curve. The maps however can contract components and one
needs to worry about automorphisms. So, all in all it’s not super nice. The relevant moduli space is
Kontsevich’s stack of stable maps.
In DT theory the perspective is switched: the maps are as nice as they get (inclusions), but the

curves are impossibly bad. The relevant moduli space is MX = HilbX - the Hilbert scheme of X

HilbX = {Z↪ X} = {OX↠ OZ}

which parameterises subschemes of X or, equivalently, quotients of the structure sheaf.
There is actually a deep (and complicated!) relationship between DT and GW, going by the name of

the MNOP conjectures (which have been proven for many things, I think including everything toric).
There are other counting theories. As it’s related to this we should mention Pandharipande-Thomas
theory (which is similar to DT theory but where one does not allow points to float off the curve).
Anyway, let’s go back to DT theory.
As usual, if we fix some topological data (namely the Hilbert polynomial or the Chern character of

OZ) the moduli space splits into open and closed components

HilbX =∐
α

HilbX(α) = {OX↠ OZ∣ch(OZ) = α}.

We are interested in α = (0, 0,β,n), so that β is the homology class corresponding to [Z] and by
Riemann-Roch n is the holomorphic Euler characteristic of Z

n =∑
i

(–1)i dimCHi (Z,OZ).
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Notice that we also allow β = 0.
However, the correct approach to describe the virtual class is by considering HilbX as a moduli

space of ideal sheaves (which are torsion free sheaves with trivial determinant). However again, for DT
theory for CY3’s a miracle happens.

“Instead of using complicated homology classes, one uses complicated Euler characteris-
tics.”

Kai Behrend has shown that every scheme of finite type M comes with a constructible function
νM∶M(C) → Z (called its Behrend function). When M is smooth of dimension d then νM ≡ (–1)d

is constant. This function is deformation invariant and thus picks up on the possible non-reduced
structure of M (e.g. two points coming together to form a fat point).
Given the Behrend function we can define the weighted Euler characteristic of M as

χB(M) :=∑
k

k ⋅ χtop [ν–1M (k)[ .

We can think of the Euler characteristic as a substitute for counting when a space is not zero-
dimensional. This weighted Euler characteristic is an even fancier version (actually, the theorem
also holds for ordinary Euler characteristic as well).

Theorem (Behrend) – For X a CY3,

∫
[HilbX(β,n)]vir

1 = χB(HilbX(β,n)) = DTX(β,n).

It is customary to bundle everything up in a generating series.

DT(X) = ∑
β,n

DTX(β,n)q(β,n)

∗
We think of DT(X) ∈ R as living in some ring R of formal series. The definition of R contains a

subtlety, in the sense that we need to consider not just finite sums, but infinite ones (this is related to
the fact that Hilb is only locally of finite type but it is indeed not quasi-compact). We’ll completely
ignore this.
Anyway, the upshot of all this is that if you don’t like virtual classes or don’t like this flavour of

enumerative geometry altogether, you can just take

DTX(β,n) = χtop(HilbX(β,n))

which we might call the “unweighted” or naive DT numbers (which unfortunately won’t be deformation
invariant anymore). In what follows I could take either one.

Flops

Theorem – Two birational Calabi-Yaus are connected by a chain of flops. (the general version of this
is due to Kawamata - I think in the setting we need it was already shown by Kollar) ∗
What is a flop? OK, the standard flop is the following. Assume Y contains a (–1, –1)-curve C - this

just means that C = P1 and that the normal bundle of C in Y is OC(–1) ⊕ OC(–1). Let’s blow up
the curve: Z = BlCY, π∶Z → Y. The exceptional locus is the projectivisation of that bundle and thus
is isomorphic to P1 ×P1. Instead of contracting via π, we collapse in the other direction, obtaining
ρ∶Z→W. This W is called the flop of Y along C.

3/10



Y W

X

f g

Actually one does a different thing. We start with Y → X a surjective birational morphism, where Y
is our Calabi-Yau threefold (in the example above we would be contracting C instead of blowing it
up). The locus Ex which is contracted by Y → X is assumed to be one-dimensional. The flop of Y
(along Ex ) is any other W → X, satisfying the same assumptions as Y → X, and such that the proper
transform of any relatively anti-ample divisor is relatively ample (for this stuff you can have a look
here).
Two nice things about this.

Theorem (Bridgeland) – The derived categories of Y and W are the same - D(Y) ≃ D(W). Actually,
there is a heart Per(Y/X) ⊂ D(Y) of a t-structure in D(Y) and W is a moduli space of point-objects
in Per(Y/X). Moreover, Per(Y/X) = Per(W/X).1 ∗

Coherent Sheaves

OK, for some reason I want to start by this completely unrelated result.

Theorem (Gabriel and later Rosenberg, Gabber/Brandenburg, Myself-Groechenig) – 2 A variety is
completely recovered by its category of coherent sheaves. ∗
What do we mean by this? If X, Y are two varieties such that Coh(X) ≃ Coh(Y) then X ≃ Y. Why

do we care? Geometry is hard, se we would like to linearise it and do some (hopefully easier!) algebra.
Coh(X) is a linear category but it’s too strong as it remembers everything about X. We can think of
D(X) as a compromise: it’s still linear enough (we can do homological algebra) but more flexibility is
allowed.
Derived categories were born in an attempt by Verdier to generalise Poincaré and Serre duality.

But even without needing such advanced technology we might say that, from a modern point of view,
homological algebra should start with derived categories as D(X) is the home of all derived functors.
Let’s recall how.

Derived Categories

What do we like about Coh(X)? It’s an abelian category, which means:

— it’s additive - so we can sum morphisms together and there is a zero object;

— it’s abelian - we can take kernels, cokernels, images and pretend we are working in a category of
modules;

— in particular we can talk about short (and long) exact sequences.

If A is an abelian category, it makes sense to talk about chain complexes:

⋯→ En–1 → En → En+1 → ⋯

1This is a lie - we should be keeping track of different perverse categories, indexed by an integer. We won’t do that however.
2As of now, the theorem is valid for either a quasi-separated scheme or a quasi-compact and separated algebraic space. It’s
false for stacks though - take two points and BZ/2Z.
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which are strings of morphisms such that the composition of two of them is zero. Such gadgets come
with cohomology objects

Hn(E) =
ker En → En+1

imEn–1 → En

for n ∈ Z. A quasi-isomorphism is a map of chain complexes ϕ∶E → F inducing an isomorphism on
cohomology Hn(E) ≃ Hn(F).

Definition 1.1 – Let A be an abelian category. We define D(A) = Ch(A)[qis–1]. ∗
So the objects are chain complexes but the morphisms are obtained by formally inverting all quasi-

isomorphisms. Notice that A sits inside D(A) by sending A to the complex with zeros everywhere
except in degree zero.
But why the hell would one want to do this? Well, how do you compute sheaf cohomology H●(X, –)?

It’s the derived functor of global sections Γ(X, –). We take a sheaf F - pick an appropriate (say,
injective) resolution

F→ I0 → I1 → ⋯
By applying Γ we obtain a chain complex

RΓ(X, F) = ⋯→ 0→ Γ(X, I0)→ Γ(X, I1)→ ⋯

by taking cohomology of the complex

Hi (X, F) = Hi (RΓ(X, F)) =
ker (Γ(X, Ii )→ Γ(X, Ii+1))

im (Γ(X, Ii–1)→ Γ(X, Ii ))

we get our sheaf cohomology. We like the whole complex RΓ(X, F) is it packaged all the information
about sheaf cohomology of F. For example, whenever we want to say about all cohomology sheaves at
once we can just say something about RΓ(X, F). However: what happens if we change the resolution?
The complex changes, although the cohomology doesn’t. So, in this sense, the notation RΓ(X, F) is
ill-defined. But, if you notice F is quasi-isomorphic to I●. In D(X) all the relevant complexes become
isomorphic and RΓ(X, F) is indeed well-defined.
The drawback here is that D(X) is no longer abelian, it will be triangulated. This means

— it’s additive;

— it has a shift functor [1] (take a complex and shift it all to the left);

— we have mapping cones (which play the role of ker and coker combined);

— instead of short exact sequences we have distinguished triangles.

If you like topology, you might think of chain complexes as being complexes C∗(X) of singular chains
on a space (or spectrum) X. Suspending a space ΣX corresponds to shifting the complex of chains.
If f ∶X → Y is a map of topological spaces, we define the mapping cone Cf by taking X, crossing it
with the unit interval I, collapsing X × {0} to a point and gluing X × {1} onto Y via f . The complex
C∗(Cf ) is homotopy-equivalent to the mapping cone of C∗(X)→ C∗(Y).
Anyhow, we say that a sequence A→ B→ C→ A[1] in the derived category is a distinguised triangle

if (more or less) it’s isomorphic to a triangle A′ → B′ → Cf (A′ → B′) → A′[1]. We call A, B, C the
vertices of the triangle.

All the functors we like extend to the derived category:

Hi (X, –)↝ RΓ(X, –); Ri f∗ ↝ Rf∗;Tori ↝ ⊗L;Exti ↝ RHom;
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and similarly derived pullback Lf ∗ and local hom RHom . Actually we also get a new one (totalling
five of the infamous six operations), f ! the ‘shriek’ pullback - this is the functor Verdier was looking for
to generalise Poincaré and Serre duality.
When f is proper, this is the right adjoint of Rf∗. Given F ∈ Coh(X) we can think of it as a complex

sitting in degree zero, and actually Coh(X) ⊂ D(X) is fully faithful and sends short exact sequences to
distinguished triangles. On the other hand, Hi (E) sends a complex to its i-th cohomology, so defined
a functor D(X) → Coh(X). This has the nice feature that if A → B → C → A[1] is a distinguished
triangle, then

⋯Hi–1(C)→ Hi (A)→ Hi (B)→ Hi (C)→ Hi+1(A)⋯
is a long exact sequence in Coh(X). Finally, the Ext functors become particularly nice as well:
Ext i (A, B) = HomD(X)(A, B[i ]).
Understanding what D(X) remembers about X is subtle, but here’s a couple.

Theorem 1.2 – Let X, Y be two smooth and projective varieties with D(X) ≃ D(Y) then:

— dim(X) = dim(Y)

— χtop(X) = χtop(Y)

— the odd and even parts of rational cohomology are preserved (but the grading gets jumbled up!)

— kod(X) = kod(Y)

— if dim(X) = 1 then Y ≃ X

— if dim(X) = 3 then hp,q (X) = hp,q (Y)

— π1 is not derived invariant, even for threefolds

— if ω±1X is ample then X ≃ Y.

∗

OK, let’s go back to flops for a second. The category Per(Y/X) is more or less defined as follows.

Per(Y/X) = {E ∈ D(Y)∣En = 0,n ≠ –1, 0;

f∗H–1(E) = 0 = R1f∗H0(E)}

So, if E ∈ Coh(X), supp(E)∩Ex = ∅, then E ∈ Per . If C = P1 is contracted by f , then OC(–2) ∉ Per ,
but OC(–2)[1] ∈ Per .3

This subcategory is special inside D(X), it’s a so-called heart of a t-structure and possesses a few
features in common with Coh(X). It is an abelian category - where a short exact sequence is a
distinguished triangle whose vertices all lie in Per . Being an inclusion, Per → D(X) is fully faithful
and exact. There are also “cohomology functors” Hi

Per ∶D(Y)→ Per , but we won’t need them.
OK, so Per gives us a way to draw a bridge (no pun intended) between Y and W, but it’s still

unclear how to employ it for DT invariants. This is where Hall algebras come in.

3The extra condition missing in the definition of Per depends on our choice of perversity, which was alluded to when we
stated Bridgeland’s theorem. The choice of the perversity essentially decides whether OC(–1)[1] belongs to Per or Per [1].
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Hall Algebras

The rough idea is as follows. Take A to be an abelian category. We want to define an algebra H(A),
where the elements are functions

f ∶A→ Q
so to each object (or, rather, isomorphism class) A ∈ A corresponds a rational number f (A). The
algebra structure is given by a “convolution” product f ∗ g where

f ∗ g(B) = ∫
Ext1B

f (A2)g(A1) = ∑
0→A1→B→A2→0

f (A1)g(A1) = ∑
A↪B

f (A)g(B/A).

When for example A = Coh(P1
Fq

) and we take only functions with finite support then H(A) makes
perfect sense. Sadly, for Coh(Y) our CY3 this does not make sense, we need something fancier.
Nevertheless, there are some valuable ideas knocking about. For example, if B ⊂ A is a subcategory
we can define 1B as

1B(E) =

⎧⎪⎪⎨⎪⎪⎩

1 E ∈ B
0 E ∉ B.

Notice that, for B = {0}, 10 is the unit of ∗.
If, say, we have two subcategories T,F ⊂ A, with the property that any E ∈ A sits in a unique short

exact sequence
0→ TE → E→ FE → 0

with TE ∈ T, FE ∈ F then
1A = 1T ∗ 1F

(such a thing is called a torsion pair ).
If O ∈ A is some element, we have 1OB ∈ H(A) defined as

1OB(E) =

⎧⎪⎪⎨⎪⎪⎩

0 E ∉ B
#{O→ E} = #Hom(O, E) E ∈ B.

Moreover, we have a sort of “quot”-element, QO defined as

QO(E) = #{O↠ E}.

As A is an abelian category, it has a first isomorphism theorem, which translates into the identity

1OA = QO ∗ 1A.

Why? Well, it makes sense. Given O → E we can take its image O↠ I, which fits into a short exact
sequence I ↪ E ↠ E/I. On the other hand, given such an extension+surjection we can just compose
O↠ I↪ E.

So, how to make this work for Coh(Y)? In some sense we just substitute # with χ.
First we need the Grothendieck ring of varietis K0(Var): it is the free abelian group spanned be

[X], for X a variety, modded out by the scissor (or cut & paste) relations. These relations say that, if
Y ↪ X is closed then

[X] = [Y] + [X ∖Y].
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Disjoint union becomes a sum [X∐Y] = [X]+[Y] and product endows K0(Var) with a ring structure
[X ×Y] = [X] ⋅ [Y].
We should think of K0(Var) as the universal recipient of “additive” invariants: any invariant of vari-

eties which is additive under stratifications must factor through this ring. In particular, the topological
Euler characteristic factors through it (but also the Poincaré or Hodge polynomials).
We need something even more general: the Grothendieck of stacks, K0(St) which is spanned by [X]

for X a finite-type Artin stack with affine diagonal (again, just as for our series ring R, finite-typeness
will get me into trouble and I’ll cheat). Actually, we need a relative version of all this. Fix a base S, we
consider [X→ S] with the relations Y ↪ X then

[X→ S] = [Y → X→ S] + [X ∖Y → X→ S].

Now let’s take the base S to be the stack of coherent sheaves

Coh(Y) = Coh(Y) = M = {E ∈ Coh(Y)}.

As usual, by fixing chern characters we get a decomposition of this:

M =∐
α
Mα =∐{E ∈ Coh(Y)∣ch(E) = α}.

For example the stack
MO = {(E, s)∣E ∈ Coh(Y), s ∶O→ E}

parameterising sheaves together with a section has an obvious forgetful map MO → M, thus making
it into an element 1OCoh of K0(St/M). Similarly, the Hilbert scheme Hilb is an element of K0(St/M).
Anyway, coherent sheaves fit into short exact sequences and we want to use this. Let

E = {0→ A1 → B→ A2 → 0}

be the stack parameterising short exact sequences of coherent sheaves. This comes with three maps
a1, b,a2∶E→M sending a short exact sequence to the left, middle or right element.

We then stick this in a diagram.
E M

M ×M

b

(a1,a2) Now, we define

H(Coh(Y)) = (K0(St/M),∗)

and the convolution f ∗ g of two elements f = [V →M], g = [W →M] is

Z E M

V ×W M ×M

f ∗g

b

(a1,a2)

(f ,g)

where Z = V ×W ×M×M E is the fibre product.
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The proof

How does this relate to DT invariants? Recall that we think of our generating series DT(X) =

∑β,n DTX(β,n)q(β,n) as living in a ring of formal series R. There is a so-called integration morphism

I∶H(Coh(Y))→ R

which, roughly, sends an element a = [V →M(β,n) →M], for V a scheme, to I(a) = χtop(V)q(β,n).
Therefore, if V = Hilb≤1(X) then I(Hilb≤1) = DT(X).
Notice that in the discussion we didn’t really have to take Coh(Y), any other sensible abelian

category would have been OK. You might have guessed it, there is a Hall algebra H(Per(Y/X)) =
(K0(St/Per(Y/X)),∗) of perverse coherent sheaves. In the algebra we find the usual elements
1Per , 1OPer and HilbPer . The algebra also has an integration morphism, so we call

I(HilbPer ) = DT(Y/X).

This quantity is clearly invariant under the flop (the equivalence between Per(Y/X) and Per(W/X)
sends OY to OW and surjections to surjections).

The goal is to find some identity in H(Per) relating HilbPer with the ordinary Hilb.

We can check directly from the definition of Per , that any P ∈ Per sits in a unique short exact
sequence

H–1(P)[1]→ P→ H0(P).

Let’s call
F = {F ∈ Coh(Y)∣f∗F = 0}

T = {T ∈ Coh(Y)∣R1f∗T = 0}
(again, the definition is slightly incomplete - I’m missing an assumption relative to the choice of the
perversity). Then

1Per = 1F[1] ∗ 1T

in H(Per). Moreover, one can check

1OPer = 1OF[1] ∗ 1OT .

Combining what we know,

HilbPer = 1OPer ∗ 1–1Per = 1OF[1] ∗ 1OT ∗ 1–1T ∗ 1–1F[1].

Which is the same as

HilbPer = 1OF[1] ∗ 1–1F[1] ∗ 1F[1] ∗ 1OT ∗ 1–1T ∗ 1–1F[1].

It turns out that after we use the integration morphism for H(Per) we just need to consider (related
to a Poisson structure which is preserved by I)

[1OF[1] ∗ 1–1F[1][ ∗ [1OT ∗ 1–1T [ .

A quick computation in H(Coh(Y)) reveals the following:

Hilb = 1OCoh ∗ 1–1Coh = 1OT ∗ 1OF ∗ 1–1F ∗ 1–1T .
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However, as f∗F = 0 for any F ∈ F, we deduce that they do not have any sections and therefore
1OF = 1F , therefore

Hilb = 1OT ∗ 1–1T .

We deduce that in H(Per)

HilbPer = [1OF[1] ∗ 1–1F[1][ ∗Hilb.

Finally, the piece on the left is also related to DT invariants, the final formula is as follows.

Theorem 1.3 – The following series is invariant under flops.

DT(Y/X) = DT∨

exc(Y)DT(Y)

where

DT(Y) = ∑
β,n

DTY(β,n)q(β,n)

DTexc(Y) = ∑
β,n

f∗β=0

DTY(β,n)q(β,n)

DT∨

exc(Y) = ∑
β,n

f∗β=0

DTY(β,n)q(–β,n).

∗
I just want to mention what happens for the McKay correspondence.

Y X

X

f g

Say we have X a CY3 DM stack, with coarse space X. Assume Y to be the irreducible component
of the Hilbert scheme of points of X containing the non-stacky points (or in other words the smooth
locus of X). Assume moreover that the fibres of f are at most one-dimensional (this is often called
hard Lefschetz, slightly more general than flops). Then what we have is that D(X) = D(Y) (this is
Bridgeland-King-Reid, later extended by Chen-Tseng). Also, Per(Y/X) = Coh(X) (I don’t think this
had yet been written down) so that

DT(Y/X) = DT(X).

Unfortunately, what prevents this from being literally true is that it’s not clear whether the two moduli
spaces

{O↠ P∣ch(P) = (β,n)}
{O↠ P∣ch(P) = (β,n),dimsupp(P) ≤ 1}

are the same (here the epimorphisms are interpreted as being in Per). Since we don’t have the lemma
that says they are the same,4 we need to restrict to the guy on the right, which is open in the guy on
the left. In turn this means that we need to take an open subset of HilbX, so that we obtain an identity
involving not DT(X) but invariants defined taking weighted Euler characteristics of some opens in
the Hilbert scheme. Nevertheless, the formula formally fits in perfectly with what was predicted (and
proved in several non-compact cases) by Bryan-Cadman-Young.

4. . . because I wasn’t able to prove it.
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