John Calabrese

A remark on generators of $\mathrm{D}(\mathbf{X})$ and flags

Received: 18 September 2016 / Accepted: 7 November 2016
Published online: 25 November 2016

Abstract

We give a simple proof of the following fact. Let X be an n-dimensional, smooth, projective variety with ample or anti-ample canonical bundle, over an algebraically closed base field. Let $\mathrm{Y}_{0} \subset \mathrm{Y}_{1} \subset \cdots \subset \mathrm{Y}_{n}=\mathrm{X}$ be a complete flag of closed smooth subvarieties, where $\mathrm{Y}_{j+1} \backslash \mathrm{Y}_{j}$ is affine. Then $\mathrm{G}=\bigoplus_{j=0}^{n} \mathcal{O}_{\mathrm{Y}_{j}}$ is a generator of the (bounded coherent) derived category $\mathrm{D}(\mathrm{X})$. Moreover, from the endomorphism dg-algebra $\operatorname{REnd}_{\mathrm{X}}(\mathrm{G})$ one can recover not only X but also the flag $\mathrm{Y}_{0} \subset \mathrm{Y}_{1} \subset \cdots \subset \mathrm{Y}_{n}$.

1. Introduction

There is a remarkable series of papers exploring the connection between marked curves and A_{∞}-algebras [4-12]. A very very coarse summary goes as follows. Let C be a (smooth projective) curve of genus g and p_{1}, \ldots, p_{n} a collection of points. Let $\mathrm{G}=\mathcal{O}_{\mathrm{C}} \oplus \mathcal{O}_{p_{1}} \oplus \cdots \oplus \mathcal{O}_{p_{n}}$, viewed as an object of the derived category $\mathrm{D}(\mathrm{C})$. With G, one can associate two objects: a graded algebra and a differential graded algebra (dg-algebra for short). The former is the Ext-algebra $\mathrm{E}=\mathrm{Ext}_{\mathrm{X}}^{*}(\mathrm{G}, \mathrm{G})$. The latter is the dg-endomorphism algebra $A=\operatorname{REnd}_{X}(G)$, defined using a dg-model of $\mathrm{D}(\mathrm{C})$. By taking cohomology, we have $\mathrm{H}^{*}(\mathrm{~A})=\mathrm{E}$. The rough idea is that, as the marked curve ($\mathrm{C}, p_{1}, \ldots, p_{n}$) varies in $\mathrm{M}_{g, n}$, the graded algebra E stays constant while the dg-algebra A changes.

Using homological perturbation, one swaps A for an equivalent minimal $\mathrm{A}_{\infty^{-}}$ algebra. This means that, instead of having a cochain complex whose cohomology is E , we equip E itself with higher multiplications m_{i}. Minimal means $m_{1}=0$.

One then considers M_{E}, the moduli of minimal A_{∞}-structures over E (up to equivalence). It turns out that the map $\mathrm{M}_{g, n} \rightarrow \mathrm{M}_{\mathrm{E}}$ is very interesting. In some cases it provides a modular (in the geometric sense) compactification.

Let us go back to the fixed marked curve ($\mathrm{C}, p_{1}, \ldots, p_{n}$) and the dg-algebra A. Let $D(A)$ be the derived category of dg-A-modules. One can show that G is a generator of $D(C)$, hence $D(A)$ is equivalent to $D(C)$. One can then appeal to, for example [1], and recover C from A. However, the results discussed above imply that more is true: from the dg-algebra A one may reconstruct both C and the configuration p_{1}, \ldots, p_{n}.

[^0]Mathematics Subject Classification: 14F05

It is not immediately obvious why this fact should be true, but see [9, Prop 4.3.1] for a proof. Furthermore, one might ask if the above extends beyond curves. The goal of this short note is to provide a cheap explanation for this reconstruction result (in genus different from one), which also carries over to some higher dimensional varieties.
Conventions We work over a fixed field k. All algebras and schemes are assumed to be over k. If X is a scheme, we write $\mathrm{D}(\mathrm{X})$ for its bounded derived category of coherent sheaves. If A is a dg-algebra, we write $D(A)$ for the bounded derived category of finitely generated right dg-A-modules. All functors, with the exception of global Homs, will be implicitly derived. More precisely, we write Homx for morphisms in the derived category $D(X)$, while RHom $_{X}$ denotes the whole chain complex. In other words $H^{0}\left(\right.$ RHom $\left._{X}\right)=\operatorname{Hom}_{X}$.

2. Generators

Let X denote a smooth proper scheme over k of dimension n. Let $\mathrm{Y}_{0} \subset \mathrm{Y}_{1} \subset$ $\cdots \subset \mathrm{Y}_{n}=\mathrm{X}$ be a nested sequence of smooth subvarieties. Assume the difference $\mathrm{Y}_{j} \backslash \mathrm{Y}_{j-1}$ is a dense affine open subset of Y_{j} (which forces Y_{j-1} to be of pure codimension one inside Y_{j}).

Proposition 2.1. The object $G=\bigoplus_{j=0}^{n} \mathcal{O}_{\mathrm{Y}_{j}}$ generates $\mathrm{D}(X)$.
To be precise, by generating $D(X)$ we mean the following. Let A be the endomorphism dg-algebra $\operatorname{REnd}_{X}(G)$. There is a functor $\Phi: D(X) \rightarrow D(A)$ given by sending E to $\operatorname{RHom}_{X}(G, E)$, with left adjoint Ψ given by sending M to $M \otimes_{A} G$. We say G generates if Φ is an equivalence. It is well know that the composition $\Phi \Psi$ is the identity as

$$
\begin{aligned}
\operatorname{RHom}_{\mathrm{X}}\left(\mathrm{G}, \mathrm{M} \otimes_{\mathrm{A}} \mathrm{G}\right) & =\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{G}\right) \otimes_{\mathcal{O}_{\mathrm{X}}} \mathrm{G}^{\vee}=\mathrm{M} \otimes_{\mathrm{A}} \operatorname{RHom}_{\mathrm{X}}(\mathrm{G}, \mathrm{G})=\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~A} \\
& =\mathrm{M}
\end{aligned}
$$

hence Ψ is fully faithful.
Proof. It suffices to show that, for any $\mathrm{E} \in \mathrm{D}(\mathrm{X})$, if $\mathrm{RHom}_{\mathrm{X}}(\mathrm{G}, \mathrm{E})=0$ then $\mathrm{E}=0$. We shall prove this by induction on the dimension of X .

When $\operatorname{dim} \mathrm{X}=0$ this is obvious as X is affine: $0=\operatorname{RHom}_{\mathrm{X}}(\mathrm{G}, \mathrm{E})=$ $\operatorname{RHom}_{\mathrm{X}}\left(\mathcal{O}_{\mathrm{X}}, \mathrm{E}\right)=\mathrm{E}$. Suppose the theorem is true in dimension $n-1$ and assume $\operatorname{dim} \mathrm{X}=n$. Let $\mathrm{Y}=\mathrm{Y}_{n-1}$ and write $i: \mathrm{Y} \rightarrow \mathrm{X}$ for the inclusion. Notice that $\mathrm{G}=$ $\mathcal{O}_{\mathrm{X}} \oplus i_{*} \mathrm{~F}$ where F is a generator of Y (by the inductive assumption). Let $\mathrm{E} \in \mathrm{D}(\mathrm{X})$ and suppose $\operatorname{RHom}_{\mathrm{X}}(\mathrm{G}, \mathrm{E})=0$. Then $0=\operatorname{RHom}_{\mathrm{X}}\left(i_{*} \mathrm{~F}, \mathrm{E}\right)=\operatorname{RHom}_{\mathrm{X}}\left(\mathrm{F}, i^{!} \mathrm{E}\right)$ which implies $i^{!} \mathrm{E}=0$. It follows that $\operatorname{supp} \mathrm{E} \subset \mathrm{X} \backslash \mathrm{Y}=\mathrm{U}$. Let $\mathrm{Z}=\operatorname{supp} \mathrm{E}$, which is closed in X . Write $\mathrm{V}=\mathrm{X} \backslash \mathrm{Z}$ and write $j: \mathrm{U} \rightarrow \mathrm{X}, h: \mathrm{V} \rightarrow \mathrm{X}, k: \mathrm{U} \cap \mathrm{V} \rightarrow \mathrm{X}$ for the inclusions. We have the following Mayer-Vietoris triangle

$$
\mathrm{E} \rightarrow j_{*} j^{*} \mathrm{E} \oplus h_{*} h^{*} \mathrm{E} \rightarrow k_{*} k^{*} \mathrm{E} \rightarrow \mathrm{E}[1] .
$$

Since supp $\mathrm{E} \subset \mathrm{U}$ we have $j^{*} \mathrm{E}=0=k^{*} \mathrm{E}$, hence $\mathrm{E} \simeq j_{*} j^{*} \mathrm{E}$. But now we may use $0=\operatorname{RHom}_{\mathrm{X}}\left(\mathcal{O}_{\mathrm{X}}, \mathrm{E}\right)=\operatorname{RHom}_{\mathrm{U}}\left(\mathcal{O}_{\mathrm{U}}, j^{*} \mathrm{E}\right.$) which implies (as U is affine) $j^{*} \mathrm{E}=0$. Hence the claim follows.

As an immediate corollary we have that, if I_{j} denotes the ideal sheaf of Y_{j}, then $\bigoplus_{j=0}^{n} \mathrm{I}_{j}$ is a generator of $\mathrm{D}(\mathrm{X})$.

3. Algebras

We will now start with an abstract algebra and define a space, together with a chain of subsets of its k -points. Let A be a smooth and proper dg -algebra and let R be an ordinary k-algebra. Recall [2,3] that an object $\mathrm{P} \in \mathrm{D}\left(\mathrm{A} \otimes_{k} \mathrm{R}\right)$ is a Bondal-Orlov point if the following are true.

- The natural map $\mathrm{R} \rightarrow \operatorname{Hom}_{\mathrm{A} \otimes_{\mathrm{k}} \mathrm{R}}(\mathrm{P}, \mathrm{P})$ is an isomorphism.
- For all $i<0, \operatorname{Hom}_{\mathrm{A} \otimes_{k} \mathrm{R}}(\mathrm{P}, \mathrm{P}[i])=0$.
- If R is a field, there exists an integer m and an isomorphism $\Sigma(\mathrm{P}) \cong \mathrm{P}[m]$.

Here Σ is the Serre functor, which exists as A was assumed to be smooth and proper. We say P is a universal Bondal-Orlov point if, for any $R \rightarrow R^{\prime}, P \otimes R^{\prime}$ is a Bondal-Orlov point.

We define the functor $\mathrm{X}_{\mathrm{A}}^{\prime}: \mathrm{Alg}(\mathrm{k}) \rightarrow$ Set from (ordinary) k -algebras to sets as

$$
X_{A}^{\prime}(R)=\left\{P \in D\left(A \otimes_{k} R\right) \mid P \text { is a universal Bondal-Orlov }\right\} / \sim
$$

where $\mathrm{P} \sim \mathrm{P}^{\prime}$ if there exists a line bundle L over R such that $\mathrm{P} \otimes_{R} \mathrm{~L} \cong \mathrm{P}^{\prime}$ in $D\left(A \otimes_{k} R\right)$.

Given a BO-point P over R, we may forget the dg-structure and just view it as a complex in $\mathrm{D}(\mathrm{R})$. As such it has cohomology R-modules $\mathrm{H}_{f}^{i}(\mathrm{P})$. We define $\mathrm{X}_{\mathrm{A}} \subset \mathrm{X}_{\mathrm{A}}^{\prime}$ as the subfunctor parameterizing those P such that

$$
\mathrm{H}_{f}^{i}(\mathrm{P}) \begin{cases}=0 & \text { if } i<0 \\ \neq 0 & \text { if } i=0\end{cases}
$$

Now we can define our flag. Consider the following subsets of $X_{A}(k)$.

$$
\mathrm{X}_{\mathrm{A}, i}=\left\{\mathrm{P} \in \mathrm{X}_{\mathrm{A}}(\mathrm{k}) \mid \operatorname{dim}_{\mathrm{k}} \mathrm{H}_{f}^{0}(\mathrm{P}) \geq i\right\} .
$$

Finally, we can prove our remark.
Theorem 3.1. Assume X is a smooth and projective variety with ample or antiample canonical bundle. Assume k is algebraically closed. Let $Y_{0} \subset \cdots \subset Y_{n}=X$ be a complete flag as in the previous section. Let G and A be the corresponding generator and dg-algebra. Then $X_{\mathrm{A}}=X$ and $X_{\mathrm{A}, n-j+1}=Y_{j}$.

Proof. Both assertions are consequences of the Bondal-Orlov theorem (see [3] where this moduli theoretic point of view is spelled out). Explicitly, recall that any $\mathrm{P} \in \mathrm{X}_{\mathrm{A}}(\mathrm{k})$ is of the form $\mathrm{P}=\mathcal{O}_{p}[j]$ for p a closed point of X . As an A-module, P is given by $\operatorname{RHom}_{\mathrm{X}}(\mathrm{G}, \mathrm{P})$. In particular, $\mathrm{H}_{f}^{-j}(\mathrm{P})=\operatorname{Hom}_{\mathrm{X}}\left(\mathrm{G}, \mathcal{O}_{p}\right)$ (notice that this is very different from the cohomology sheaf $\left.\mathrm{H}^{-j}(\mathrm{P})\right)$. More generally, we see that $\mathrm{P} \in \mathrm{X}_{\mathrm{A}}(\mathrm{k})$ if and only if $j=0$. Hence, the functor X_{A} is indeed isomorphic to X (again, see [3]).

Notice that $\operatorname{Hom}_{\mathrm{X}}\left(\mathcal{O}_{\mathrm{Y}_{j}}, \mathcal{O}_{p}\right)=\mathrm{k}$. It then follows that $\mathrm{X}_{\mathrm{A}, 1}=\mathrm{Y}_{n}(\mathrm{k}), \mathrm{X}_{\mathrm{A}, 2}=$ $\mathrm{Y}_{n-1}(\mathrm{k}), \mathrm{X}_{\mathrm{A}, 3}=\mathrm{Y}_{n-2}(\mathrm{k})$ and so on.

References

[1] Bernardara, M.: Fourier-Mukai transforms of curves and principal polarizations. C. R. Math. Acad. Sci. Paris 345(4), 203-208 (2007)
[2] Bondal, A., Orlov, D.: Reconstruction of a variety from the derived category and groups of autoequivalences. Compos. Math. 125(3), 327-344 (2001)
[3] Calabrese, J.: Relative Singular Twisted Bondal-Orlov. Preprint (2016)
[4] Fisette, R.: The A-Infinity Algebra of an Elliptic Curve and the j-Invariant. arXiv:1111.6303 (2011)
[5] Fisette, R., Polishchuk, A.: A ∞_{∞}-algebras associated with curves and rational functions on \mathscr{M}_{g}, g. I. Compos. Math. 150(4), 621-667 (2014)
[6] Lekili, Y., Perutz, T.: Arithmetic Mirror Symmetry for the 2-Torus. arXiv:1211.4632 (2012)
[7] Lekili, Y., Polishchuk, A.: A Modular Compactification of $\mathcal{M}_{1, n}$ from A_{∞}-Structures ArXiv e-prints (2014)
[8] Polishchuk, A.: A_{∞}-algebra of an elliptic curve and Eisenstein series. Commun. Math. Phys. 301(3), 709-722 (2011)
[9] Polishchuk, A.: Moduli of Curves as Moduli of A-Infinity Structures. arXiv:1312.4636 (2013)
[10] Polishchuk, A.: Moduli of Curves with Nonspecial Divisors and Relative Moduli of A_{∞}-Structures. arXiv:1511.03797 (2015)
[11] Polishchuk, A.: A-Infinity Algebras Associated with Elliptic Curves and EisensteinKronecker Series. arXiv:1604.07888 (2016)
[12] Polishchuk, A.: Moduli Spaces of Nonspecial Pointed Curves of Arithmetic Genus 1. arXiv: 1603.01238 (2016)

[^0]: J. Calabrese (\boxtimes): Rice University, Houston, TX, USA.
 e-mail: calabrese@rice.edu

