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These are my own notes for the first few lectures, use at own risk. For this course
we will follow Hall’s book [Hal15], which only deals with matrix groups. I wanted to
spend some time with general Lie groups, if only to demystify the abstract theory.
This document is essentially a condensed version of [War83, Chapter 3] (with plenty of
omissions but also a few additions).
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1. Introduction

A Lie group is both a group and a manifold. What will we be interested in?

• Examples (matrix groups: closed subgroups of GL).
• Actions G×M→ M and quotients M/G.
• Morphisms between Lie groups G→ H.
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• The special case G→ GL(V), i.e. representations.

Let φ : G → H be a morphism (i.e. a smooth map respecting the group structure).
How can we study it? As usual, a good idea is always to take a linear approximation: dφ.
We also have an obvious point to pick: the neutral element e . Since φ(e) = e , we have
a linear map ψ = dφ(e) : TeG→ TeH, between tangent spaces. So studying those ψ
arising as dφ(e) is part of studying Lie groups. Does ψ satisfy any special properties?

We should somehow incorporate the fact that φ was a group homomorphism. For
example we could take the left translation Lx : G→ G taking y 7→ xy . We certainly have
φ ◦ Lx = Lφ(x) ◦ φ. However, when passing to the derivative this will change tangent
spaces. Why not use conjugation? For x ∈ G, we have an automorphism Cx : G→ G
sending y to xyx–1. Certainly φ ◦ Cx = Cφ(x) ◦ φ.

The derivative of Cx is a map dCx (e) : TeG→ TeG. As x varies, we obtain a map
(traditionally called the adjoint representation) Ad: G→ GL(TeG), sending x to dCx (e).
When G is a matrix group, this truly sends a matrix A to conjugation by A.

The chain rule implies then that, for any x ∈ G,

ψ ◦Adx = Adφ(x) ◦ψ.

This is not quite what we want yet, since the formula we obtained still involves φ.
To remedy, we take a second derivative. (shocking!) Let ad: TeG → End(TeG) be
the derivative of Ad at e . Notice we identified the tangent space TI GL(TeG) with
End(TeG): this is standard, since GL is an open subset of End.

Each tangent vector X ∈ TeG, is sent to adX ∈ End(TeG). In turn, this sends a
tangent vector Y ∈ TeG to adX(Y) ∈ TeG. It is customary to write

adX(Y) = [X, Y]

and call it the Lie bracket. One typically writes g = TeG and refers to the pair (g, [, ])
as a Lie algebra. Again, in the case of a matrix group G, the Lie algebra g also has a
description in terms of matrices and the bracket becomes [X, Y] = XY – YX.

Since φ was a group homomorphism, it follows that

ψ([X, Y]) = [ψ(X),ψ(Y)].

The upshot is that we have a way to “linearize” groups, passing from G to g and from φ
to ψ. Finally, to provide a bridge back from algebras to groups, we have the exponential
map. This is a smooth map exp: g→ G satisfying the following:

• if φ : G→ H is a morphism of Lie groups, then exp ◦dφ(e) = dφ(e) ◦ exp
• exp(0) = e
• d exp(0) : T0g = g→ TeG = g is the identity
• lines through the origin are sent to one-parameter subgroups of G.

A one-parameter subgroup is simply a morphism R→ G. In the case of a matrix group,
the exponential map is given by the exponential of a matrix X 7→ eX.

2. The basics

In this section we want to cover the first definitions and recall some basic facts about
smooth manifolds.
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2.1. Lie groups. For us, a Lie group will be a group object in the category of (smooth)
manifolds. For us, a manifold will be always be smooth (i.e. C∞), second countable and
Hausdorff (in particular paracompact and admitting partitions of unity). So, a Lie group
is a manifold G, together with an element e ∈ G, two smooth maps m : G × G → G,
i : G → G, satisfying the group axioms. A morphism of Lie groups is a smooth map
G→ H which is also a group homomorphism (we will also say Lie map or Lie morphism).

2.2. Lie algebras. Here is one way Lie algebras come up. Let A be an associative
algebra. We define the (commutator) bracket on A to be [, ] : A×A→ A sending x , y to

[x , y ] = xy – yx .

The bracket has the following properties:

• [, ] is bilinear
• [x , x ] = 0
• [x , y ] = –[y , x ]
• [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0. (the Jacobi identity)

A Lie algebra is a vector space g with a bracket [, ] satisfying the axioms above. A
morphism of Lie algebras ψ : g→ h is a map of vector spaces which preserves the bracket:
[ψ(x ),ψ(y)] = ψ([x , y ]) (we will also say a Lie map or morphism).

Remark 2.1. Taking an associative algebra A to the corresponding Lie algebra under
the commutator bracket actually describes a functor Ass → Lie. There is also a way
to go back (a left adjoint), a procedure which takes a Lie algebra g and spits out an
associative algebra U(g) (called the universal enveloping algebra). We’ll not go into that
now. We only mention that the two gadgets are closely related: Rep(g), the category of
representations of g, is actually equivalent to Mod(U(g)), the category of U(g)-modules.

2.3. Vector fields. A vector field X on a smooth manifold M is by definition a self-
derivation of theR-algebra of smooth functions C∞(M). This means that X: C∞(M)→
C∞(M) eats up a function f ∈ C∞(M) and spits out another function Xf , which should
be thought of as the “derivative of f along the direction X”. All this while satisfying the
following properties:

• X(af + g) = aXf + Xg for any a ∈ R, f , g ∈ C∞(M)
• X(fg) = f Xg + gXf for any f , g ∈ C∞(M) (Leibniz rule)

We write X(M) for the set of vector fields. This is a vector space, but it’s not an algebra:
composition of vector fields is not a vector field. However, we may pretend it’s an
algebra (or view it as sitting inside EndR(C∞(M)), which is an algebra) and define the
corresponding bracket: [X, Y] = X ◦Y – Y ◦X. More explicitly,

[X, Y](f ) = X(Yf ) – Y(Xf )

for any f ∈ C∞(M). With this bracket, X(M) becomes a Lie algebra.

2.4. Tangent vectors. If p ∈ M, a tangent vector v at p is a derivation-at-p of C∞(M).
This means v : C∞(M)→ R is such that

• v(af + g) = av(f ) + v(g) for all a ∈ R, f , g ∈ C∞M,p

• v(fg) = f (p)v(g) + g(p)v(f ) for all f , g ∈ C∞M,p .

We think of v(f ) as being the value at p of the derivative of f along the vector v . We
write TpM for the set of tangent vectors at p. This is a vector space of dimension dim M.

There is a “restriction to the fibre” or “evaluation” map X(M)→ TpM which takes
a vector field X to the tangent vector Xp . The latter is defined by Xp(f ) = (Xf )(p).
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We may think of a vector field X as a (smoothly varying) collection of tangent vectors
{Xp}p∈M (in fancier terms: a section of the tangent bundle). If f ∈ C∞(M), we
think of (Xf )(p) as the derivative of f at p along the vector Xp . Notice the difference:
vector fields are derivations C∞(M)→ C∞(M), while tangent vectors are derivations
C∞(M)→ R.

If φ : M→ N is a smooth map and φ(p) = q , the differential at p (or total derivative)
is dφ(p) : TpM→ TqN, where the tangent vector v is sent dφ(p)v which on a function
f evaluates to

dφ(p)v(f ) = v(f ◦ φ).

The derivative is R-linear. When enough is understood, we write φ∗ for dφ(p).

Remark 2.2. Notice that there isn’t a pushforward of vector fields, i.e. dφ does not
define a map X(M)→ X(N). Indeed, if g ∈ C∞(N), you’d want to define (φ∗X)(g) as
X(g ◦ φ). But the latter is a function on M, not on N.

Remark 2.3. Let c(t) be a curve in a manifold M. Then X = c ′(0) = dc(0)1 ∈ TxM is
a tangent vector, where x = c(0). We say X is the velocity of c(t) at t = 0. If f : M→ R
is a function, then

Xf =
d

dt

∣∣∣
t=0

f (c(t)) = lim
t→0

f (c(t)) – x

t
.

Finally, let φ : M→ N be a smooth map. Then φ∗X = dφ(x )X = (φ ◦ c)′(0).

2.5. Related. Let φ : M → N be a map. The vector fields X ∈ X(M), Y ∈ X(N) are
φ-related if

X(f ◦ φ) = (Yf ) ◦ φ.

Equivalently, for all p ∈ M we have φ∗Xp = dφ(p)Xp = Yφ(p).

Lemma 2.4. Suppose φ : M→ N, X1, X2 ∈ X(M), Y1, Y2 ∈ X(N), Yi is φ-related to
Xi . Then [X1, X2] is φ-related to [Y1, Y2].

Proof. Let f ∈ C∞(N). Then

[X1, X2](f ◦ φ) = X1(X2(f ◦ φ)) – X2(X1(f ◦ φ))

= X1(Y2f ◦ φ) – X2(Y1f ◦ φ)

= Y1(Y2f ) ◦ φ – Y2(Y1f ) ◦ φ
= [Y1, Y2]f ◦ φ. �

2.6. Lie algebra of a Lie group. Let now G be a Lie group. If x ∈ G, we have a
diffeomorphism Lx : G→ G sending y 7→ Lx (y) = xy . This is called the left translation.
We say that a vector field X ∈ X(G) is left invariant if for all x ∈ G and f ∈ C∞(G) we
have

X(f ◦ Lx ) = (Xf ) ◦ Lx .(2.1)

In other words, X is Lx -related to itself, for all x ∈ G. Write X(G)L ⊂ X(G) for the
subset of left-invariant vector fields on G.

Proposition 2.5. X(G)L is a Lie subalgebra of X(G).

A subalgebra is just a vector subspace closed under brackets.
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Proof. Clearly X(G)L is a subspace, so it remains to show it is closed under Lie brack-
ets. Suppose X, Y ∈ X(G) are left invariant. Then both X and Y are Lx -related to
themselves, hence [X, Y] is Lx related to itself, for all x ∈ G. �

Proposition 2.6. Restriction X(G)L → TeG is an isomorphism of vector spaces.

Proof. Let us construct an inverse to restriction, by forcing left invariance. If v ∈ TeG

is a tangent vector at the identity, we wish to define a vector field X ∈ X(G)L. In other
words, we need to declare the value Xf (x ) for any function f ∈ C∞(G) and point
x ∈ G. So we set

Xf (x ) = v(f ◦ Lx )

this makes sense as we want left invariance:

v(f ◦ Lx ) = X(f ◦ Lx )(e) = (Xf ◦ Lx )(e) = Xf (x ).

Then we go and diligently check that everything we did made sense. �

We call g = Lie(G) = TeG = X(G)L the Lie algebra of the Lie group G. By the
proposition above, it is a finite dimensional vector space of dimension dim G.

Remark 2.7. Using the previous proposition, TeG inherits the structure of a Lie algebra.
Although from what we’ve said so far it doesn’t seem natural to view TeG as a Lie
algebra, it’ll pay off when dealing with matrix groups.

If X ∈ TeG, the corresponding vector field X ∈ X(G)L is determined by Xx = Lx
∗X.

Remark 2.8. What if we had used right invariant vector fields instead? Certainly,
restriction X(G)R → TeG still gives us a vector space isomorphism. What changes is
that [X, Y] becomes –[X, Y]. This can be shown by using the derivative of the inversion
map.

Proposition 2.9. Let φ : G→ H be a map of Lie groups. Then the derivative φ∗ : TeG→
TeH is a map of Lie algebras.

In other words we have a functor LieGrp → LieAlg sending G to g and φ to
φ∗ = dφ(e).

Proof. We need to check that φ∗ preserves the Lie bracket. First off, we notice that since
φ is a group homomorphism, φ ◦ Lx = Lφ(x) ◦ φ.

Suppose now X ∈ TeG and write X̃ for the corresponding left invariant vector field
on G. Let Y = φ∗X and let Ỹ be the corresponding left invariant vector filed on H.
The vector field X̃ and Ỹ are φ-related. Indeed, if f ∈ C∞(H), then

X̃(f ◦ φ)(x ) = X(f ◦ φ ◦ Lx )

= X(f ◦ Lφ(x) ◦ φ)

= (φ∗X)(f ◦ Lφ(x))

= Y(f ◦ Lφ(x))

= Ỹf (φ(x )).
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This lets us easily conclude.

[φ∗X1,φ∗X2] = [φ̃∗X1, φ̃∗X2]e

= [Ỹ1, Ỹ2]e

(Lemma 2.4) = φ∗[X̃1, X̃2]e

= φ∗[X1, X2]

where Xi ∈ g, Yi = φ∗Xi and ˜ denotes the associated left invariant vector fields. �

2.7. Subsets. The following may be viewed as categorical pedantry, but it pays off when
stating some theorems. Let S = {1, 2, 3} be a set. No one would argue that T = {1, 2} is
a subset of S. But what about T′ = {1,♠}? There is an obvious injective map j : T′ → S
sending 1 7→ 1 and ♠ 7→ 2. Hence we may view T′ (together with the map j ) as a subset
of S. But should we? Well, maybe we should. Define a categorical subset of S to be a
pair (j , A) where j : A→ S is injective. We then declare two subsets (j , A), (j ′, A′) to
be equivalent if there is a bijection f : A→ A′ such that j ′ ◦ f = j . Obviously, given a
subset (j , A) we can always find a unique representative in its equivalence class (i , T)
where T ⊂ S and i is the inclusion.

Now, for sets this line of thought isn’t too helpful. However, already in topology we can
think of interesting injective maps f : X→ Y, but where the topology of X is different
from the subspace topology of f (X) ⊂ Y. Think of exp: [0, 2π)→ S1: while we could
just say that we are viewing S1 with a funky topology on it, it’s just clearer to think about
[0, 2π) wrapping around the circle.

A similar circle (pun not intended) of ideas applies to cartesian products (which is
possibly the example one encounters of a ‘limit’ in category theory). Say we have three
sets A, B, C. What is their product? Obviously the answer is A × B × C. But, why
shouldn’t (A× B)× C or A× (B× C) be regarded as the product? Strictly speaking,
these are three different sets: the first consists of symbols (a, b, c), the second ((a, b), c)
and the third (a, (b, c)). But all of them are clearly representing the triple product of A,
B and C.

2.8. Submanifolds. Recall that ι : N → M is an immersion if, for all p ∈ N, dψ(p) :
TpN → Tψ(p)M is injective. An immersion is a submanifold if it is injective. A
submanifold is an embedding if it is a homeomorphism onto its image: in other words the
topology on M coincides with the subspace topology of ψ(M) ⊂ N.

We say two submanifolds (ι, N), (ι′, N′) are equivalent if there is a diffeomorphism
φ : N→ N′ making the obvious diagram commute: φ ◦ ι = ι′. Among an equivalence
class of submanifolds there is always a unique representative which is a subset of the
ambient manifold: A ⊂ M. However, the topology of A is not necessarily the subspace
topology (unless it is an embedding).

2.9. Frobenius. In this subject, a distribution V often denotes a smoothly varying
collection of subspaces {Vp}p∈M, Vp ⊂ TpM. In other words, V ⊂ TM is a sub-bundle
of the tangent bundle of M. We say V is involutive (or completely integrable) if, whenever
X, Y ∈ X(M) belong to V, we have [X, Y] also belongs to V. We say a submanifold
N ⊂ M is an integral manifold of V if TpN = Vp for all p ∈ N. The following basic
result is central for many things that will follow.

Theorem 2.10 (Frobenius). Let V ⊂ TM be an involutive distribution of rank k . Let
p ∈ M. Then there exists an integral submanifold N ⊂ M passing through p.
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Even better, there exists a unique connected maximal integral manifold N passing
through p. Every other connected integral manifold is contained in N.

Here’s a consequence, which already shows how close Lie groups and Lie algebras are.

Theorem 2.11. Let G be a connected Lie group and let φ,ψ : G → H be such that
φ∗ = ψ∗ : g→ h. Then φ = ψ.

Proof. The graph x 7→ (x ,φ(x )) ∈ G × H induces a map of Lie algebras g → g × h.
In particular, its image defines a subspace Ve ⊂ g × h. By left translating as usual,
this defines a sub-bundle V ⊂ T(G × H). Since φ∗ preserves the Lie bracket, V is
involutive. Hence, by Frobenius, there is a unique connected maximal integral manifold.
By maximality, this has to coincide with the graph of φ. Since φ∗ = ψ∗, they both define
the same sub-bundle. In turn this means that the graphs of φ and ψ are the same, hence
φ = ψ. �

A way to rephrase this is that the functor from connected Lie groups to Lie algebras
is faithful.

2.10. Subgroups. Let G be a Lie group. We will use a flexible definition of subgroup,
making a couple of theorems nicer. A subgroup will be a pair (ι, H) where

• H is a Lie group
• ι : H→ G is a Lie map
• (ι, H) is a submanifold (i.e. ι is injective and an immersion)

A subgroup is closed if ι(H) ⊂ G is closed. As usual, we place an equivalence relation on
subgroups. We will be more interested in closed subgroups, but there are plenty of non
closed ones out there. A silly example is to take Q with the discrete topology and the
inclusion Q ⊂ R.

A better example is the infamous irrational torus. Consider the map φ : Z → S1

sending k to e2πika for a ∈ R. If a ∈ Q, then the image of φ consists of finitely many
points. However, if a ∈ R \Q, then its image is dense. This is because any real number
can be approximated by some ka , modulo 1. To obtain the irrational torus, we map
ψ : R → S1 × S1 sending t 7→ (eit , eiat ) with a again irrational. The image of ψ is a
subgroup of the torus, whose closure is the whole torus.

Here is a general fact which is interesting in its own right.

Proposition 2.12. Let G be a topological group. Let G0 be the connected component
containing the identity e ∈ G. Then G0 is a normal subgroup.

Proof. Let m denote the multiplication map. The product G0 × G0 is connected and
the same will hold for its image m(G0 × G0). Since it contains e , we must have
m(G0 ×G0) ⊂ G0. Same argument for the inversion map ι. Hence G0 is a subgroup.
Normality follows similarly as conjugation Cg (x ) = gxg–1 is continuous. �

Obviously if G is a Lie group, G0 will be a normal (closed) Lie subgroup. Here is
another application of the Frobenius theorem.

Theorem 2.13. Let g be the Lie algebra of a Lie group G. Let h < g be a subalgebra.
Then there is a unique connected Lie subgroup (i , H) with i∗Lie(H) = h.

Proof sketch. By left translating, h defines a sub-bundle of TG. A direct computation
shows it is involutive. Take (i , H) to be the unique connected maximal integral manifold
passing through e . We want to show that H is actually a Lie group. Pick x ∈ i(H) ⊂ G.
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Then (Lx–1 ◦ i , H) is also an integral manifold passing through e . By uniqueness, we
must have Lx–1

(i(H)) ⊂ i(H). In other words, for y ∈ i(H) we have x–1y ∈ i(H). This
implies H can be endowed with the structure of an abstract group, such that i : H→ G
is a group homomorphism. One then checks that everything is smooth and that there is
no other Lie group satisfying the theorem. �

Corollary 2.14. Let G be a Lie group with Lie algebra g. There is a bijection between
connected Lie subgroups and Lie subalgebras.

We conclude this subsection by stating without proof a powerful result.

Theorem 2.15. Let (i , H) < G be an abstract subgroup (i.e. a subgroup in Grp, not
LieGrp). If H is closed, then H is a Lie subgroup and i is an embedding.

Proof. A proof can be found in [War83, Th 3.21]. It does not rely on any big sledgeham-
mers, but only the existence of nice coordinate charts for submanifolds and point-set
topology. �

2.11. Covering spaces. Lie groups and covering spaces play nicely.

Proposition 2.16. Let G be a connected Lie group. Let π : G̃ → G be its universal
cover. Then G̃ can be given the structure of a Lie group so that π is a Lie map.

Proof. We know that G̃ is a manifold and that dπ is an isomorphism on tangent spaces.
Pick a point in π–1(e) and call it ẽ . This will be the neutral element of the group
structure on G̃. Consider α : G̃× G̃→ G given by α(x , y) = π(x )π(y)–1. Since G̃× G̃

is simply connected, there exists a unique lift β : G̃×G̃→ G̃ sending β(ẽ, ẽ) = ẽ . By lift
we mean that πβ = α. For x , y ∈ G̃, we then define x–1 = β(ẽ, x ) and xy = β(x , y–1).
These operations are clearly smooth. One then checks they satisfy the group axioms.
By construction, π is a group homomorphism. �

Let π : G̃ → G be our Lie group universal cover. Let K = kerπ = π–1(e) be the
kernel. Since π is a covering space, K has the discrete topology. We have G = G̃/K and
thus K may be identified with the fundamental group π1(G, e). While we are at it, we
mention another general fact about Lie groups.

Theorem 2.17. Let G be a connected Lie group: π1(G, e) is abelian, π2(G, e) = 0 and
π3(G, e) is torsion free.

Proposition 2.18. Let φ : G → H be a Lie map. Then φ is a covering if and only if
φ∗ : g→ h is an isomorphism.

Proof. Covering spaces are fibre bundles with discrete fibre, hence one direction is obvi-
ous. Conversely, suppose φ∗ is an isomorphism. Then dφ(x ) is an isomorphism for all
x , by translating. This implies φ is a local homeomorphism. In particular it’s open. It
follows that φ must be surjective (this relies on the lemma below). Let K = kerφ. Then
H = G/K and, since φ is a local diffeo, the action of K is a proper discontinuous, hence
φ is a covering space. �

The proof above used the fact that a neighborhood of the identity generates the group.

Lemma 2.19. Let G be a Lie group. Let U be a neighborhood of the identity. Then U
generates G, in the sense that G =

⋃
n Un where Un is the subset of n-fold products of

elements of U.
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2.12. Simply connected Lie groups.

Theorem 2.20. Let G, H be Lie groups with Lie algebras g, h. Suppose G is simply
connected. Let ψ : g → h be a Lie morphism. Then there exists a unique φ : G → H
such that φ∗ = ψ.

Proof. Consider the subalgebra of g × h given by (x ,ψ(x )) for x ∈ g. By a previous
theorem, we know there is a unique connected Lie subgroup Z ⊂ G × H. Now, the
projection Z→ G induces an isomorphism of Lie algebras, hence it must be a covering
space. But G is simply connected, hence Z → G is an isomorphism, hence Z must be
the graph of some φ : G→ H, which is forced to be a group homomorphism. �

A more categorical way to say this is that the functor from simply connected Lie
groups to Lie algebras is full. Combined with 2.11, we see the functor is actually fully
faithful. What we would like to say is that the functor is also essentially surjective.

Theorem 2.21 (Ado). Let g be a finite dimensional Lie algebra (over any field). Then
there is an injective Lie map g ↪→ gl(V) for some vector space V.

Therefore, let g be any Lie algebra and view it as a matrix Lie algebra. By ??, there is
a subgroup H < GL(V). Hence, the functor (from simply connected Lie groups to finite
dimensional Lie algebras) Lies.c. → LieAlgfin is an equivalence.

Finally, we mention a few more interesting facts about Lie groups.

Theorem 2.22 (people, I should really look up the references). Let G be a second count-
able, locally euclidean topological group. Then there exists a differentiable structure on
G making it a Lie group. This structure is unique. Moreover, this structure can be
upgraded (in a unique way) to an analytic structure.

Theorem 2.23. Let φ : G→ H a continuous group homomorphism between Lie groups.
Then φ is smooth.

2.13. Exp. Consider now R as a Lie group. The tangent space at 0 has a distinguished
basis vector, wich we call d/ dr . The Lie algebra of R is then the vector space Rd/ dr ,
with trivial bracket.

Let G be a random Lie group. If X ∈ g is any element of the Lie algebra, we have a
corresponding map

λ d/ dr 7→ λX(2.2)

which is a map of Lie algebras since the bracket on the domain is trivial. Since R is
simply connected, there is a unique Lie map

expX : R→ G

whose derivative at 0 ∈ R is (2.2)

d expX(0) (λ d/ dr) = λX.

In other words, t 7→ expX(t) is the unique 1-parameter subgroup of G with that derivative.
We define the exponential map to be

exp: g→ G

X 7→ expX(1)

You’d expect exp to have the following properties.

Theorem 2.24. Let X ∈ g = Lie(G).
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(1) exp(tX) = exptX(1) = expX(t), for all t ∈ R
(2) exp((t1 + t2)X) = exp(t1X) exp(t2X), for all t1, t2 ∈ R
(3) exp(–tX) = exp(tX)–1, for all t ∈ R
(4) exp: g→ G is smooth,

d exp(0) : T0g→ TeG = g

is the identity.
(5) exp induces a diffeomorphism between a neighborhood of 0 ∈ g and a neigh-

borhood of e ∈ G.
(6) The 1-parameter group of diffeomorphisms Xt associated with the left invariant

vector field X is given by Xt = RexpX(t) where Rx is right-translation by x .

Proof. This is [War83, Thm 3.31]. �

Theorem 2.25 (naturality of exp). If φ : G → H is a Lie map, the following diagram
commutes.

g h

G H

φ∗

exp exp

φ

Proof. Let X ∈ g and let Y = φ∗X. By definition, exp(Y) = expY(1). We know that
expY is the only 1-parameter subgroup such that (expY)∗ sends d/dr to Y. On the
other hand, φ ◦ expX : R → H is also a 1-parameter subgroup, and (φ ◦ expX)∗ sends
d/dr to φ∗X = Y. Hence exp(Y) = expY(1) = (φ ◦ expX)(1) = φ(exp(X)). �

Proposition 2.26. Let (H, i) be a Lie subgroup of G and let X ∈ g. If X ∈ i∗h, then
exp(tX) ∈ i(H) for all t ∈ R. Conversely, if exp(tX) ∈ i(H) for t in some interval,
then X ∈ i∗h.

Proof. One direction follows from naturality of exp, the other from Frobenius (unique-
ness of maximal integral manifolds). �

Finally, a theorem which will be useful to construct Lie groups.

Theorem 2.27. Let φ : G → H be a Lie map. Let K = kerφ and k = kerφ∗. Then K
is a closed Lie group with Lie algebra k.

Proof. Being a kernel, A is a closed subgroup and hence (by the closed subgroup the-
orem) it is a Lie group. We need to show that k is its Lie algebra. Let X ∈ g. We
know by a previous theorem that X ∈ Lie(K) if and only if exp tX ∈ K for all t ∈ R.
Now, exp tX ∈ K if and only if φ(exp tX) = e if and only if expφ∗tX = e . But if
exp tY = e for all t ∈ R, we must have Y = 0. Hence, X ∈ Lie(K) if and only if
X ∈ k = kerφ∗. �

2.14. The General Linear Group. Let V be a vector space over C (what we say
holds also over R). We write gl(V) = glC(V) = EndC(V) for the vector space of
C-linear endomorphisms of V. This is an associative algebra, hence it has a Lie
algebra structure given by commutators: [X, Y] = XY – YX. Inside gl(V), we have
the locus GL(V) consisting of invertible linear maps. This can also be described
as GL(V) = {det 6= 0} where det : gl(V) → C∗ is the determinant. Since det is
continuous, then GL(V) ⊂ gl(V) is open, hence a manifold, hence a Lie group. Since
GL(V) is an open subset of a vector space, we may identify the tangent space TI GL(V)
with gl(V) itself.



MATH 465 - FALL 2017 11

Proposition 2.28. We have Lie(GL(V)) = gl(V), in other words the Lie bracket of left
invariant vector fields on GL(V) is the commutator bracket.

Proof. If X ∈ gl(V) and f : GL(V)→ R is any function, then

Xf = lim
t→0

f (I + tX) – f (I)

t
.

Suppose f is actually the restriction of a linear function on gl(V), then

Xf = lim
t→0

f (I + tX) – f (I)

t
= f (X).

Call X̃, the left invariant vector field corresponding to X. Recall this was defined by
declaring X̃f (A) = X(f ◦ LA), where A ∈ GL(V). Explicitly,

X̃f (A) = X(f ◦ LA) = lim
t→0

f ◦ LA(I + tX) – f ◦ LA(I)

t
= lim

t→0

f (A + tAX) – f (A)

t

Once again, if f is the restriction of a linear function on gl(V) then

Xf (A) = f (AX)

and since f is linear, Xf is still linear.
Suppose now X, Y ∈ gl(V). Let us evaluate the Lie bracket [X̃, Ỹ] ∈ gl(V) on linear

functions. If f is linear and B ∈ GL(V), we have

[X̃, Ỹ]f (B) = X̃(Ỹf )(B) – Ỹ(X̃f )(B)

= Ỹf (BX) – X̃f (BY)

= f (BXY) – f (BYX) = f (BXY – BYX).

The Lie bracket is given by specializing B = I. To summarize, we’ve concluded that for
all linear functions f we have [X, Y](f ) = f (XY–YX). It follows that [X, Y] = XY–YX
(if v ,w are vectors, and for all elements f of the dual we have f (v) = f (w), then
v = w ). �

We now prove that exp is really exp. If A ∈ gl(V), we define eA to be the power
series

eA =
∑
k≥0

Ak

k !

and one shows that it converges uniformly, defining an analytic function gl(V)→ gl(V).
If B ∈ GL(V), then

BeAB–1 = eBAB–1
.

This is true as it is true for all partial sums
∑N

k=0 and it passes to the limit. We write
AdB(A) = BAB–1.

Let us specialize to the case of A ∈ gl(n,C). We know there exists B ∈ GL(n,C)
such that AdB A is upper triangular. If U ∈ gl(n,C) is upper triangular with diagonal
entries a1, . . . , an then eU is also upper triangular with diagonal entries ea1 , . . . , ean .
Hence eU ∈ GL(n,C).

Proposition 2.29. The exponential of a matrix is invertible: e : gl(V)→ GL(V).
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Proof. Pick a basis and work over C. Let A ∈ gl(n,C). Find B such that AdB A is
upper triangular. Then eAdB A ∈ GL(n,C). But eAdB A = AdB eA, hence eA ∈
GL(n,C). �

Using the same trick, we see that

det eA = etrA

(recall that for an upper triangular matrix U with diagonal entries ai we have det U =
a1 · · · an and tr U = a1 + · · ·+ an ).

Proposition 2.30. eA+B = eAeB if AB = BA.

Proof. Call SN(A) =
∑N

k=0
Ak

k ! for the partial sum. We have eA = limN→∞ SN(A).
Since matrix multiplication is continuous, we have eAeB = limN→∞ SN(A)SN(B).
We want to show that limN→∞ SN(A)SN(B) – SN(A + B) = 0. Notice S0(A)S0(B) –
S0(A + B) = I – I = 0, S1(A)S1(B) – S1(A + B) = (I + A)(I + B) – A – B =
I + B + A + AB – (I + A + B) = AB.

S2(A)S2(B) – S2(A + B) = (I + A +
A2

2
)(I + B +

B2

2
) – (I + A + B +

(A + B)2

2
)

= I + B +
B2

2
+ A + AB +

AB2

2
+

A2

2
+

A2B

2
+

A2B2

4

– (I + A + B +
A2 + AB + BA + B2

2
)

=
AB2

2
+

A2B

2
+

A2B2

4

where we used that AB = BA. In general, one shows that We have

SN(A)SN(B) – SN(A + B) =
∑ BlAk

l !k !

where the sum is over all integers l , k such that 1 ≤ l ≤ N, 1 ≤ k ≤ N and N + 1 ≤
l + k ≤ 2N. The point is that the denominators are factorials, which grow stupidly fast.
Pick µ > 1 an upper bound for the entries of A and B. One shows that each entry of
the RHS is bounded by

∑ n l+k–1µl+k

l !k !
≤ nµ2NN2

[N/2]!

which goes to zero as N→∞. �

Theorem 2.31. The exponential map exp: gl(V)→ GL(V) of the Lie group GL(V) is
given by A 7→ eA. In other words, exp(A) = eA.

Proof. Consider the map t 7→ etA. This map is smooth and by differentiating the power
series term by term we see that its derivative at t = 0 is A. By the previous Proposition
we know that it is group homomorphism, i.e. a 1-parameter subgroup. By uniqueness,
expA(t) = etA. In particular, exp(A) = expA(1) = eA. �
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2.15. Ad. Suppose G acts (smoothly) on the left on the manifold M. For g ∈ G,
write αg : M → M for the map which takes x to gx . In other words, αg sees the
effect of the single element g on M. Now, if gx = x , then dαg : TxM → TxM is an
invertible linear map. Suppose now x is a fixed point. Then G→ GL(TxM), sending
g 7→ (αg )∗ = dαg (e), is a group homomorphism. By a representation of a group G we
mean a Lie morphism G→ GL(V).

A special case of this is the adjoint representation. The group G acts on itself by
conjugation: Cg (x ) = gxg–1. Since e ∈ G is a fixed point, we may differentiate to obtain
the adjoint representation Ad: G→ GL(g). By definition, Adg = (Cg )∗ = d(Cg )(e).

Theorem 2.32. Let G = GL(V). Then AdB A = BAB–1.

Proof. Pick B ∈ GL(V). If A ∈ gl(V), we have

AdB(A) = (CB)∗A = d(CB)(I)A = lim
t→0

CB(I + tA) – CB(I)

t
= BAB–1. �

Suppose now Π: G→ GL(V) is a representation. Differentiating at the identity, we
obtain a map of Lie algebras π = Π∗ : g→ TI GL(V) = End(V) = gl(V). Just as group
homomorphisms G → GL(V) have a special name, Lie maps g → gl(V) are called
representations of Lie algebras.

Proposition 2.33. Let Π: G→ GL(V) and let π = Π∗ : g→ gl(V). Then

π(X) =
d

dt

∣∣∣
t=0

Π(exp(tX))

Proof. We want to compute π(X) = Π∗X. Consider the curve c(t) = exp(tX). We have
c ′(0) = X. Thus, π(X) = (Π ◦ c)′(0). Now, c ◦Π: R→ GL(V) hence its derivative as
the explicit formula

π(X) = (Π ◦ c)′(0)

= lim
t→0

(Π ◦ c)(t) – I

t

= lim
t→0

Π(exp tX) – I

t

=
d

dt

∣∣∣
t=0

Π(exp(tX)). �

Once again, let’s have a look at conjugation. Take the adjoint representation Ad: G→
GL(g). We may differentiate it, obtaining ad = (Ad)∗ : g→ gl(g). Unsurprisingly, this
is called the adjoint representation of the Lie algebra g.

Theorem 2.34. Let X, Y ∈ g = Lie(G). Then adX(Y) = [X, Y].

Proof. We know that X is the velocity at t = 0 of the curve exp tX, while Y is the
velocity at s = 0 of the curve exp sY. For g ∈ G, Adg (Y) = (Cg )∗Y is the velocity at
s = 0 of the curve Cg (exp sY). While adX = (Ad∗)X is the velocity of t = 0 of the
curve Adexp tX. Our goal is to show that the tangent vectors [X, Y], adX Y ∈ g are the
same. Hence we should show that they spit out the same value when we feed them a
function f : G→ R. Write

a(t , s) = Cexp tX(exp sY) = exp(tX) exp(sY) exp(–tX)
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so that

(adX Y)(f ) =
∂2

∂t∂s

∣∣∣
(0,0)

f ◦ a(t , s)

By using the chain rule one shows that the RHS is equal to

(adX Y)(f ) =
∂2

∂t∂s

∣∣∣
(0,0)

f (exp tX exp sY) –
∂2

∂t∂s

∣∣∣
(0,0)

f (exp sY exp tX)

As usual, let X̃, Ỹ be the corresponding left invariant vector fields. If we show that

∂2

∂t∂s

∣∣∣
(0,0)

f (exp tX exp sY) = X(Ỹf )

(and the same with X and Y swapped) we are done. But

(Ỹf )(x ) = Y(f ◦ Lx )

=
d

ds

∣∣∣
s=0

f ◦ Lx ◦ exp sY

=
d

ds

∣∣∣
s=0

(f (x exp sY))

So that

X(Ỹf ) =
d

dt

∣∣∣
t=0

Ỹf (exp tX) =
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

(f (exp tX exp sY)).

Repeating the same with X and Y swapped we conclude. �

By naturality of exp, we have a commutative diagram

g gl(g)

G GL(g)

ad

exp exp

Ad

since ad = (Ad)∗. This means

AdexpX Y = eadXY = Y + [X, Y] +
[X, [X, Y]]

2
+

[X, [X, [X, Y]]]

3!
+ · · ·

Similarly, since conjugation Cg is a group homomorphism, naturality of exp applies and
we have

g g

G G

Adg

exp exp

Cg

since, by definition, Adg = (Cg )∗. Elementwise, this means that for X ∈ g, we have

g exp(tX)g–1 = exp(Adg tX).

Theorem 2.35. Let H < G, with both H and G connected Lie groups. Then H is
normal if and only if h < g is an ideal.

An ideal of a Lie algebra g is a subspace such that [g, h] ⊂ h.
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Proof. Assume h is an ideal. Let X ∈ g, Y ∈ h and let g = exp X. Then

g(exp Y)g–1 = exp(Adg Y)

= exp((exp adX)(Y))

= exp

(
Y + [X, Y] +

[X, [X, Y]]

2!
+ · · ·

)
Since h is an ideal, the series in the last term converges to an element in h, implying that
g exp Yg–1 ∈ H. But H is generated by elements of the form exp Y and G is generated
by elements of the form exp X, which is enough to conclude.

Assume now H is normal. Let s, t ∈ R and let Y ∈ h, X ∈ g. We want to show that
[X, Y] ∈ h. Let g = exp tX. Once again

g(exp sY)g–1 = exp(Adg (sY)) = exp s ((exp adtX)(Y))

Let v = v(t) = (exp adtX)(Y). Since H is normal, g(exp sY)g–1 ∈ H. Thus exp sv ∈
H for all s , implying v ∈ h. But v(t) is a smooth curve in h, whose tangent vector at
t = 0 is [X, Y]. Thus [X, Y] ∈ h as desired. �

Definition 2.36. The center of G is the subgroup of elements commuting with every-
thing. The center of g is Z(g) = {X ∈ g | [X, Y] = 0∀Y ∈ g}.

Theorem 2.37. Let G be a connected Lie group. The center of G is the kernel of the
adjoint representation.

Proof. Let g lie in the center of G and let X ∈ g. Then

exp tX = g(exp tX)g–1 = exp t Adg X(2.3)

for all t ∈ R. Thus X = Adg X for all X, or Adg = I. In other words g ∈ ker(Ad).
Conversely, let g ∈ ker Ad. Then 2.3 holds, when read backwards. Hence g com-

mutes with all elements of the form exp tX, and since G is connected we conclude that
g ∈ Z(G). �

Remark 2.38. In particular, if G is a Lie group with trivial center, then Ad: G→ GL(g)
realizes G as a matrix group.

Corollary 2.39. Let G be a connected Lie group. Then its center Z(G) is a closed Lie
subgroup, with Lie(Z(G)) = Z(g).

Proof. The previous theorem tells us that Z(G) consists of ker Ad. But we know that for
a Lie map G→ H its kernel is a closed Lie subgroup with Lie algebras the kernel of the
derivative. And d Ad = ad. �

A Lie algebra is called abelian if it has trivial bracket.

Corollary 2.40. A connected Lie group is abelian if and only if its Lie algebra is abelian.

Proposition 2.41. Let X, Y ∈ g for a Lie group G. If [X, Y] = 0 then exp X exp Y =
exp(X + Y) = exp Y exp X.

Proof. Consider the subspace h < g generated by X, Y. Since they commute, it’s an
abelian subalgebra. To it corresponds an abelian connected Lie subgroup H < G.
Consider α(t) = exp(tX) exp(tY), which is a 1-parameter subgroup since it is smooth
and H is abelian. The tangent vector at t = 0 is given by X + Y. By uniqueness, we
have exp(tX) exp(tY) = exp t(X + Y). �
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In the proof, we used the following.

Lemma 2.42. Let G be a Lie group and let α(t),β(t) be smooth curves in G, such that
α(0) = e = β(0). Let γ(t) = α(t)β(t) be the curve obtained via multiplication. Then
γ ′(0) = α′(0) + β ′(0).

Proof. Let m : G × G → G denote multiplication. By the chain rule, it suffices to
show that m∗(v ,w) = v + w , for v ,w ∈ TeG and m∗ = dm(e, e) the derivative at
(e, e) ∈ G × G. Since (v ,w) = (v , 0) + (0,w), we reduce to computing m∗(v , 0).
Explicitly, v ∈ TeG and (v , 0) = i∗v where i : G→ G×G is the inclusion g 7→ (g , e).
But m ◦ i is the identity, hence we are done. �

Here is a common way to produce Lie groups.

Proposition 2.43. Let β be a bilinear form on a vector space V (over R or C). Let G
be

Aut(V,β) = {A ∈ GL(V) | β(Av , Aw) = β(v ,w)} < GL(V).

Let g be the space of derivations

Der(V,β) = {X ∈ gl(V) | β(Xv ,w) + β(v , Xw) = 0} < gl(V).

Then G is a Lie group with Lie(G) = g.

Proof. First off, G is a closed subgroup of GL(V), hence a Lie group. Secondly, g is a
Lie subalgebra of gl(V). Let now X ∈ gl(V).

If X ∈ g, then exp tX ∈ G for all t ∈ R. Indeed, if A = etX, then a bunch
of cancellations happen in β(Av , Aw) making it equal to β(v ,w). This implies X ∈
Lie(G), hence g ⊂ Lie(G).

Conversely, suppose X ∈ Lie(G). In other words, exp tX ∈ G for all t ∈ R.
Explicitly, if At = exp tX, β(Atv , Atw) = β(v ,w) for all v ,w ∈ V. Then

0 =
d

dt

∣∣∣
t=0

β(Atv , Atw)

= β(
d

dt

∣∣∣
t=0

Atv ,w) + β(v ,
d

dt

∣∣∣
t=0

Atw)

= β(Xv ,w) + β(v , Xw)

and we are done. �

In the proof we used the following lemma.

Lemma 2.44. Let γ(t), δ(t) be two curves in a vector space V. Let β be a bilinear form
on V. Then

d

dt

∣∣∣
t=0

β(γ(t), δ(t)) = β(γ ′(0), δ(0)) + β(γ(0), δ′(0)).

Proof. By definition

d

dt

∣∣∣
t=0

β(γ(t), δ(t)) = lim
t→0

β(γ(t), δ(t)) – β(γ(0), δ(0))

t

= lim
t→0

β(γ(t), δ(t)) – β(γ(0), δ(t)) + β(γ(0), δ(t)) – β(γ(0), δ(0))

t

= lim
t→0

β(
γ(t) – γ(0)

t
, δ(t)) + β(γ(0), δ′(0))

= β(γ ′(0), δ(0)) + β(γ(0), δ′(0)). �
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A slight variation of this is if we have a bilinear map b : V ⊗ V → V. Then the Lie
group of matrices preserving b has for Lie algebra the space of derivations: A ∈ gl(V)
such that Ab(v ,w) = b(Av ,w) + b(v , Aw). This can be applied to the following setup.

Remark 2.45. Let g be a Lie algebra. The bracket is a bilinear map g ⊗ g → g.
The group of linear isomorphisms preserving the bracket are precisely the Lie algebra
automorphisms of g, Aut(g). From the previous paragraph it follows that Aut(g) is a
Lie group, with Lie algebra given by the derivations with respect to the bracket.

Let G be a simply connected Lie group. Then Aut(G), the group of invertible Lie
morphisms, is in bijection with Aut(g). From the discussion above, Aut(G) becomes a
Lie group, with Lie algebra the derivations of g.

2.16. Examples. The most common Lie groups are matrix groups, i.e. closed subgroups
of GL(V) for V a vector space. We have seen already that for b a bilinear form, the
group Aut(V, b) < GL(V) is a Lie group with Lie algebra given by derivations.

Here are a few instances of this. The orthogonal group and the complex orthogonal group

O(n) = {A ∈ GL(n,R) | AtA = I}

O(n,C) = {A ∈ GL(n,C) | AtA = I}
whose Lie algebras

o(n) = {A ∈ gl(n,R) | At + A = 0}

o(n,C) = {A ∈ gl(n,C) | At + A = 0}.
consist of skew-symmetric matrices. The unitary group

U(n) = {A ∈ GL(n,C) | Āt
A = I}

u(n) = {A ∈ gl(n,C) | Āt
+ A = 0}

whose Lie algebra consists of skew-hermitian matrices.
The map det : GL(V)→ C∗ is a Lie morphism. Its kernel is SL(V), the special linear

group. Since it’s a closed subgroup it’s a Lie group. Its Lie algebra is given by the kernel
of det∗, the derivative at the identity of det. One can compute that det∗ = tr, the trace.
Hence the Lie algebra

sl(V) = {A ∈ gl(V) | tr(A) = 0} < gl(V)

consists of traceless matrices. Another way to see this is to use the exponential. Indeed,
we know that

det eA = etrA.

If tr A = 0 we have det eA = 1. On the other hand, if det etA = 1 it implies that
tr(tA) ∈ 2πiZ. Since at t = 0 it is zero, it follows it must be constantly zero.

In addition to inner products, we also like symplectic forms. On R2n there is the
standard symplectic form

ω(x , y) =

n∑
j=1

xj yn+j – xn+j yj .

The corresponding Lie group is the real symplectic group Sp(n,R). If

Ω =

(
0 I
–I 0

)
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with I being the n × n identity matrix, then

Sp(n,R) = {A ∈ GL(2n,R) | AtΩA = Ω}

and its Lie algebra is given by

sp(n,R) = {A ∈ GL(2n,R) | ΩA + AtΩ = 0}.

Similarly, the complex symplectic group and algebra

Sp(n,C) = {A ∈ GL(2n,C) | AtΩA = Ω}

sp(n,C) = {A ∈ GL(2n,C) | ΩA + AtΩ = 0}.

Finally, we have the compact symplectic group Sp(n) = Sp(n,C) ∩U(2n).
Combining SL with the previous groups leads to more interesting examples. The

special orthogonal and unitary groups

SO(n) = O(n) ∩ SL(n,R)

SU(n) = U(n) ∩ SL(n,C)

and, while so(n) = o(n)

su(n) = u(n) ∩ sl(n) = {A ∈ gl(n,C) | Āt
+ A = 0 = tr(A)}.

This will make more sense later, when we investigate these groups further.

2.17. Homogeneous spaces. A space M is called homogeneous if there is a Lie group G
acting transitively on it. If m ∈ M and H is the stabilizer group, then M is diffeomorphic
to G/H, in a G-equivariant way.

Theorem 2.46. Let H be a closed subgroup of a Lie group G. Let π : G → G/H be
the quotient. Then G/H admits a manifold structure which may be characterized as the
unique one such that π is smooth and has local sections. When H is normal, G/H is
also Lie group.

No proof.

Theorem 2.47. Let G ×M → M be a (smooth) transitive action of a Lie group on a
manifold. Pick a point m ∈ M and let H be its stabilizer (aka isotropy) group. Then
G/H→ M is a G-equivariant diffeomorphism.

Again, no proof.

2.17.1. Spheres. Let’s give some examples. Of course we have the action GL(n,R) ×
Rn → Rn , which restricts to O(n) × Sn–1 → Sn–1. This action is transitive. One
checks that the stabilizer group of the last canonical vector en is O(n – 1), where a
matrix A ∈ O(n – 1) is sent to 

0

A
...
0

0 · · · 0 1


Thus,

Sn–1 = O(n)/ O(n – 1).
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The same discussion may be repeated with SO, concluding that

Sn–1 = SO(n)/ SO(n – 1).

Switching to the unitary groups, an entirely parallel discussion over Cn shows that
S2n–1 = U(n)/U(n – 1) = SU(n)/ SU(n – 1). Since SU(1) = {e}, we see that
SU(2) = S3.

Theorem 2.48. The only spheres that are Lie groups are S1 and S3.

We give a very rough sketch, stolen from mathoverflow.

Proof. Let G be both a sphere and a Lie group. Let n = dim G and g = Lie(G).
Suppose G is abelian, then g is abelian, meaning g ' Lie(Rn). The isomorphism
Lie(Rn)→ g extends to a Lie map Rn → G, which must be a covering space. In other
words, G has contractible universal cover. Hence G ' S1.

Let G be non abelian. Since G is compact, there is an Ad-invariant inner product
〈, 〉 on g. Consider the map

τ : g× g× g→ R(x , y , z ) 7→ τ(x , y , z ) = 〈[x , y ], z 〉

which can be shown to be a 3-form on g. Since G is non-abelian, there exist x , y such
that [x , y ] 6= 0. Thus, τ(x , y , [x , y ]) = |[x , y ]|2 6= 0. Extend τ to a non-zero 3-form
by left translation. One then shows that this form is also right invariant. One can show
that bi-invariant forms are actually closed. Suppose τ is a boundary, i.e. τ = dσ. Then
one can show that σ can be chosen to be itself bi-invariant. But bi-invariant forms are
closed, hence τ = 0 which is a contradiction. Hence H3(G,R) 6= 0. Thus, G ' S3. �

2.17.2. Projective space. We write RPn =
(
Rn+1 \ {0}

)
/R∗ = Sn/

(
Z/2Z

)
for the

n-dimensional real projective space. Running yet again the same argument, one sees that

RPn–1 = SO(n)/ O(n – 1)

where this time a matrix A ∈ O(n – 1) is sent to
0

A
...
0

0 · · · 0 1
detA


in SO(n).

Finally,

CPn–1 = SU(n)/ U(n – 1)

where a matrix A ∈ U(n – 1) is sent to
0

A
...
0

0 · · · 0 1
detA
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2.17.3. Stiefel manifolds. Let V be a vector space and let p ≤ dim V = n . The Stiefel
manifold Sp(V) consists of ordered tuples (v1, . . . , vp) of linearly independent vectors
in V. Now, GL(V) clearly acts on Sp(V) and the action is obviously transitive. If we
fix a point (v1, . . . , vp) ∈ Sp(V) then its stabilizer consists of those linear maps which
keep the vi fixed. By choosing coordinates, we may assume vi = ei so that the stabilizer
becomes the subgroup

H =

{(
I A
0 B

)
∈ GL(n,R)

}
where I is the p×p identity matrix. Thus Sp(Rn) is the homogeneous space GL(n,R)/H.
One checks that the manifold structure on Sp(V) does not depend on any choices.

2.17.4. Grassmannians. Let Gr(k ,n) be the set of k -dimensional subspaces of Rn . Obvi-
ously GL(n,R) acts on it. But also O(n) acts on it. Consider the subspace spanned by
e1, · · · , ek . The stabilizer of the O(n) action is given by the subgroup

H =

{(
A 0
0 B

)
∈ O(n) | A ∈ O(k), B ∈ O(n – k)

}
We may identify H with O(k)×O(n – k). Hence

Gr(k ,n) = O(n)/
(

O(k)×O(n – k)
)

One should also check that the choices we made don’t affect anything.

2.18. More about the examples.

Proposition 2.49. Let H be a closed subgroup of a Lie group G. If H and G/H are
connected, then G is connected.

Proof. This follows from the long exact sequence of a fibration, but it can also be proved
by hand. �

Theorem 2.50. The groups SO(n), SU(n), U(n) are connected.

Proof. SO(1) and SU(1) consist of one point, hence they are connected. U(1) = S1 is
also connected. Since spheres are connected, we may use the previous proposition. �

Theorem 2.51. The Lie group O(n) has two connected components.

Proof. Let A ∈ O(n), by definition AAt = I, hence (det A)2 = 1 which means det A =
±1. Let Σ be diag(–1, 1, . . . , 1). If det A = –1, then ΣA ∈ SO(n). Hence O(n) =
SO(n) ∪ Σ SO(n). �

Theorem 2.52. The group GL(n,R) has two connected components. In particular,
GL(n,R) = GL+(n,R)× Z/2Z.

Proof. If A ∈ GL(n,R) then det A is either positive or negative. If Σ = diag(–1, 1, . . . , 1)
as before, then det ΣA = – det A. Hence, the set of matrices with negative determinant
is diffeomorphic to the subgroup GL+(n,R) of matrices with positive determinant. It
suffices to show that GL+(n,R) is connected. For each A, we show there is a con-
tinuous path from A to the identity I, showing GL+(n,R) is path-connected, hence
connected. Let A ∈ GL+(n,R) and let A = PR be a polar decomposition. We must
have det R = 1. Notice that Pt = tI + (1 – t)P is symmetric positive-definite for each t ,
so PtR is a path connecting A to R. But SO(n) is connected, hence we are done. �
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Lemma 2.53. Polar decomposition: if A ∈ GL(n,R) then A = PR, with P positive
definite symmetric and R ∈ O(n).

Proof. All the eigenvalues of a symmetric matrix are real and positive-definite means all
the eigenvalues are positive. Take A ∈ GL(n,R). The matrix B = (AAt )t = AAt is
symmetric. Let a be an eigenvalue for B with eigenvector v . Then

a〈v , v〉 = 〈Bv , v〉

= 〈AAtv , v〉

= 〈Atv , Atv〉 ≥ 0

hence a ≥ 0. Since det A 6= 0, a > 0. Thus B is a symmetric positive-definite matrix.
Since it is symmetric, there exists C ∈ O(n) which diagonalizes it (this is the spectral
theorem). Hence, CBCt is a diagonal matrix with positive eigenvalues: we may take its
(positive) square root, call it D. We record for the later the fact that

B = CtD2C = CtDCCtDC = (CtDC)2.

Let P = CtDC. Let R = P–1A. Certainly P is a positive-definite symmetric matrix. To
show R ∈ O(n) we compute

RRt = P–1AAt (P–1)t

= P–1B(Pt )–1

= P–1BP–1

= P–1(CtDC)2P–1

= P–1P2P–1 = I. �

2.19. Loose ends. We conclude with a few facts found in the exercises of [War83].
• Exp for GL(n,R) is not surjective (example on page 134).
• A description of the only 2D non abelian Lie algebra, the only 2D simply
connected Lie group.
• An example of matrices whose exps don’t commute.
• Exp for GL(n,C) is surjective.
• Abelian Lie groups are all Rn × Tm .
• U(n) = S1 × SU(n)
• GL(n,C) is connected.

3. Outroduction

All right, that was fun. Now let’s move on to [Hal15].
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