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These notes cover some basic topics in the theory of derived categories of coherent sheaves.
The initial goal was to provide a minimum background to start reading directly (and without
feeling too lost) Chapter 4 of Huybrechts’s most awesome “Fourier-Mukai transforms in
algebraic geometry”. That chapter is where the material stops being just homological
algebra and starts being fun.

Presently, this pdf contains a bit more than that, reflecting essentially all the material
covered in class. The exposition mainly follows Kashiwara-Schapira “Sheaves on manifolds”
for the first half and Huybrechts for the second half.

I’ve tried to keep the exposition concise and the prerequisites at a minimum. This means
that some parts are incomprehensible to the novice but also super-boring for the expert
(this is especially true for the treatment of sheaves).

In closing, two things: comments about the content are always very welcome, so please
feel free to email me if you have any; one may safely skip anything marked “digression”.
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1. Introduction

The aim of this lecture is to provide some motivation for studying derived categories.
It is not important to grasp all (or any) of the details: they will become clear only after
digesting material which comes much later on.

Derived categories were introduced by Verdier around 1960, while he was a student
of Grothendieck. The main motivation was to provide a more convenient framework to
perform homological algebra. This lead to clarifying theorems which, up to that point,
could only be stated in the language of spectral sequences. Moreover, Verdier’s theory
lead to vast generalizations of Poincaré duality in topology and Serre duality in algebraic
geometry.

The axiomatics of derived categories are a special case of triangulated categories, which
had been independently developed by Dold and Puppe to uncover the structure of the
stable homotopy category of spectra in topology.

Nowadays, derived and triangulated categories appear also in other fields, such as
algebra (Morita theory), symplectic geometry (via Fukaya categories), representation theory
(D-modules, perverse sheaves) and even string theory (branes).

We give below three examples for why one might care about derived categories. The
first is mirror symmetry, which is possibly the most exciting and ambitious. The second is
Serre’s intersection formula, which is both technical in nature (explaining why a module
should be identified with its resolutions) but also conceptual, as it leads to what is now
called derived algebraic geometry. The final reason is upgrading spectral sequences, which is
a purely technical reason and close to the origins of the subject.

1.1. Mirror symmetry. — We start with a few words on what has probably been the
biggest driving force in the study of derived categories of coherent sheaves: homological
mirror symmetry. We won’t even be close to doing justice to the subject, but will content
ourselves with a general and vague picture. An excellent source of information is Nick
Sheridan’s website.

Mirror symmetry actually originates in physics. The starting point are so-called N=2
superconformal field theories, which still elude a mathematically rigorous definition. These
theories admit what are called topological twists: an A-model and a B-model. Since both
models come from the same conformal field theory, one expects outputs of the A side to be
related to those from the B side.

The A-model lives in the symplectic world. For example, if X∨ is a symplectic manifold,
its Gromov–Witten invariants are A-model invariants. The B-model lives in algebraic
geometry (well, possibly Kähler geometry is more correct). If X is an algebraic variety, its
Hodge structure or periods of differential forms are B-model invariants.

What caught the attention of mathematicians were striking computations done by
Candelas-de la Ossa-Green-Parkes, who (correctly) predicted enumerative invariants of
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Calabi-Yau threefolds which were previously unknown. Specifically, they predicted the
number of rational curves on a degree five hypersurface in P4 (the quintic threefold). A
mathematically rigorous (but still mirror-symmetry-inspired) argument was later given by
Givental and Lian-Liu-Yau.

In 1994, Kontsevich conjectured his homological mirror symmetry, which categorifies
the relation between the A and B models and aims at explaining other examples of A and
B model invariants being identified under mirror symmetry. Vaguely, he predicts that for
X a Calabi-Yau threefold there should exist a mirror Calabi-Yau threefold X∨ such that
D(X), the bounded derived category of coherent sheaves on X, is equivalent to DFuk(X∨),
the derived Fukaya category of X∨. The former will be the object of study of these notes
and represents the B side. The objects of D(X) are chain complexes of holomorphic vector
bundles. The latter lives in the realm of symplectic geometry and represents the A side.
Its objects are, essentially, Lagrangians submanifolds. This conjecture is - to say the least -
remarkable, as it bridges (in a rather surprising way!) two distinct areas of math.

1.2. Tor. — Let’s move on to something more concrete: Tor, the derived functor of tensor
product. Consider X = C2 = A2 affine two-space, a parabola P ⊂ X given by the equation
y = x2, a line Lc ⊂ X given by the equation y = c2. The intersection P ∩ Lc is zero-
dimensional and consists of the points (c, c2) and (–c, c2). We notice immediately that, if
c 6= 0, these are two distinct points so that |P ∩ Lc | = 2, while when c = 0 we only get the
origin 0. This feels wrong: the number of intersection points should be unaffected by small
perturbations of our initial setup. The fix is easy enough, by using a little algebra: instead
of taking the set-theoretic intersection we should be taking the scheme-theoretic intersection.

Let’s do this algebra. Set A = C[x, y], so X = SpecA, P = SpecA/(y – x2), Lc =
SpecA/(y – c2). The intersection P ∩ Lc is the fibre product P×X Lc , which corresponds to
the tensor product A/(y – x2)⊗A A/(y – c2). We have,

A/(y – x2)⊗A A/(y – c2) = A/(y – x2, y – c2)(1.1)

= C[x]/(c2 – x2)(1.2)

= C[x]/(c – x)(c + x)(1.3)

when c 6= 0, the remainder theorem tells us that this is isomorphic to C[x]/(c – x)×C[x]/(c + x)
and thus P ∩ Lc = Spec(C[x]/(c – x)) ∪ Spec(C[x]/(c + x)). On the other hand, if c = 0, we get
the ring C[x]/(x2). This ring, which is called the ring of dual numbers, is not the product of
two rings. However, dimCC[x]/(x2) = 2, recovering our intersection number.

Let’s see a simpler example. Take X = C2, Y the union of {x – y = 0} and {x + y = 0}, Zc
the line y = c. Again, for c 6= 0 we have two points, while for c = 0 we get a single point
with multiplicity two. Let’s do the algebra.

A/(x – y)(x + y)⊗ A/(y – c) = C[x]/(x – c)(x + c)(1.4)

which reduces to the same example as before.
Let’s have a look at a variant of the example above. Consider X = C4, Y the union

of the 2-planes {x – y = 0 = z – w}, {x + y = 0 = z + w} and Zc the plane {y = c = w}.
The (scheme-theoretic) intersection Y ∩ Zc is given by the (reduced) points (c, c, c, c) and
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(–c, c, –c, c). So we expect that when c = 0, the intersection will have multiplicity two. Let
A = C[x, y, z,w]. The algebra tells us that

A
(x – y, z – w) · (x + y, z + w)

⊗ A/(y,w) = C[x, z]/(x, z) · (x, z)(1.5)

= C[x, z]/(x2, xz, z2)(1.6)

which has basis (as a C-vector space) {1, x, z} hence has dimension three! So the scheme-
theoretic intersection does not contain enough information to get the correct answer. So,
what’s the solution?

Serre solved this problem beautifully, by giving an algebraic expression for the correct
intersection multiplicity, which involves Tor modules. Nowadays, we have an even more
conceptual answer. Instead of taking the scheme-theoretic intersection of Y and Z one
should take the derived intersection. The idea is that the structure sheaf of this derived
intersection is the derived tensor product M

L
⊗ N, where M = A/(x – y, z – w) · (x + y, z + w)

and N = A/(y,w). This is a chain complex of A-modules, whose cohomology are the

Tor-modules: H–i (M
L
⊗ N) = TorAi (M, N). Giving this intersection a geometric meaning

involves techniques which go beyond these lectures. But let’s see this circle of ideas in action
in this example.

Serre tells us that the correct intersection multiplicity is given by

χ(M, N) =
∑
i

(–1)i dimC TorAi (M, N).(1.7)

The recipe to compute Tor is more or less straightforward: we need to resolve M or N by
free modules and then apply the tensor product.

Let’s call M = A/(x – y, z –w) · (x + y, z +w), N = A/(y,w). The module N, called the Koszul
resolution. Let’s construct it by hand. The module N is generated by the element 1, so
A→ N sending 1 to 1 is surjective.

0→ 〈y,w〉 → A→ N→ 0(1.8)

Its kernel is precisely the ideal 〈y,w〉. Thus we have a surjective map A⊕2 → 〈y,w〉 sending
(1, 0) to y and (0, 1) to w. More concisely, the vector (f , g ) is sent to yf + wg .

0→ K→ A⊕2 → A→ N→ 0(1.9)

One checks that the kernel K of this map is generated by the obvious candidate: the vector
(w, –y). So we have a surjective map A→ K taking 1 to (w, –y). One checks that this map is
injective, leading to our free resolution

0→ A

(
w
–y

)
−→ A⊕2

(
y w

)
−→ A→ N→ 0(1.10)

where we have indicated the maps in matrix form. To compute Tor: we omit N, tensor
what’s left with M and take cohomology. Let’s call the tensored up complex P•

P• = 0→ M→ M⊕2 → M→ 0(1.11)
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By construction, H–i (P) = Tori (M, N). Also by construction, Tor0(M, N) = M ⊗ N and we
already computed its dimension to be 3. One checks that the first map M → M⊕2 is
injective, as its kernel is given by those f in A/I such that wf = 0 and yf = 0 (a change
of variables x′ = x + y etc can be helpful). This implies two things: Tor2(M, N) = 0 and the
image M→ M⊕2 is the span of the vector (w, –y).

Finally, we need to compute H–1(P), which is given by the kernel K = ker(M⊕2 → M)
modded out by the image I = im(M→ M⊕2). We already know that I is the span of (w, –y),
so we are left with working out K. This is given by those vectors (f , g ) such that yf +wg = 0
in M. A computation (or plugging everything into macaulay2) yields that K is generated by
the obvious vector (w, –y) and (z, –x). One then checks that H–1P = K/I has dimension 1, as
wanted. We will see later on that Tori (M, N) = 0 for i ≥ 2, and that dimC = Tor1(M, N) = 1.
In other words, Serre’s formula gives 3 – 1 = 2, which is the correct intersection multiplicity!

In conclusion, one finds χ(M, N) = 2, as wanted. To rephrase things, the intersection
Y ∩ Z produces the desired output only when viewed in the derived world.

1.3. Spectral sequences. — Derived categories were originally defined to perform homo-
logical algebra. For example, deriving the composition of two functors leads to a spectral
sequence. Spectral sequences are a notoriously difficult subject (the concept of a spectral
sequence is in itself quite elementary but the mess of indices makes it impossibly confusing).
Probably the simplest case is the Leray spectral sequence. If f : X→ Y is a map between
manifolds, the spectral sequence roughly says that the cohomology of X can be computed
in terms of the cohomology of Y with coefficients the cohomology groups of the fibres of f .
Let us be more precise.

Let F be a sheaf (say of abelian groups) on X. The idea is that a sheaf F consists of stalks
Fx for each x ∈ X, glued in a compatible way. The easiest case is F = ZX the constant sheaf,
which has stalk Fx = Z for each x and no interesting gluing information. Sheaf cohomology
says Hi (X,ZX) = HiBetti(X,Z) where the latter is ordinary singular cohomology. We can
push sheaves forwards, in symbols: to F we can associate its pushforward (or direct image)
f∗F. The idea is that the stalk (f∗F)y is the space of sections Γ(Xy , F|Xy ) of F on the fibre
Xy = f –1(y). The derived functors of f∗ are the higher direct images Rif∗F, which are sheaves
on Y. The idea is that the stalk (Rif∗F)y is the cohomology Hi (Xy , F|Xy ) of the fibre. The
Leray spectral sequence

Hp(Y, Rq f∗F)⇒ Hp+q (X, F)(1.12)

is a way to compute the cohomology of X with coefficients in F, from the cohomology Y
with coefficients in Rif∗F. This is a generalization of the famous Serre spectral sequence,
which can sometimes be applied to compute homotopy groups.

There is also a relative version the spectral sequence. Say g : Y → Z is another map,
then this fancier Leray says

Rpg∗(Rq f∗F)⇒ Rp+q (g ◦ f )∗F(1.13)

Indeed, the first spectral sequence is special case of the second, where Z = pt is a point.
This is because, for g : Y→ pt the map to a point, g∗F can be identified with the space of
global sections Γ(Y, F). Therefore, the higher direct images of g are the derived functors of
Γ, i.e. sheaf cohomology.
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Using derived categories, we replace the sequence of derived functors Rpf∗ with a single
Rf∗. For F a sheaf, Rf∗F is a chain complex of sheaves, whose cohomology (in the sense of
chain complexes: i.e. the kernel of the differential modulo the image of the differential, not
be confused with sheaf cohomology) is Hp(Rf∗F) = Rpf∗F, the p-th derived functor of f∗.

Leray’s spectral sequence now becomes the fact that R(g ◦ f )∗(F) = Rg∗ ◦ Rf∗(F). This
formula not only looks nicer, but becomes useful when composing more than two derived
functors. For example if we now wanted to take cohomology of all the sheaves involved.

Caveat emptor. Needless to say, nothing in life comes for free. Derived categories
provide a great language to organize derived functors, but computations often still require
spectral sequences.

2. Analogies

We continue our preliminary (and informal) discussion on derived categories. This
short section has two main goals: convincing ourselves that chain complexes contain more
information than their homology, understanding why derived categories would be a sensible
thing to study. To achieve this, we will try and import a tiny little bit of homotopy theory
in the realm of chain complexes. Once again, the details right now are not important.

2.1. Chains. — Homology is great: it takes a space X and spits out abelian groups Hi (X),
which interact with topological operations surprisingly well. These groups are computable
in many concrete examples and, moreover, contain a bunch of information.

Theorem 2.1 (Whitehead+Hurewicz). — Let X and Y be two simply-connected spaces.
Then X and Y are homotopy equivalent if and only if there is a map f : X→ Y inducing
isomorphisms in homology f∗ : Hi (X)→ Hi (Y) for all i.

If you’ve seen this before, you know the standard warning.

Warning 2.2. — Consider X = S2 ∨ S4 and Y = CP2. Recall that Hi (CP2) = Z if i is
even and zero otherwise (this can easily be seen using cellular homology). Using Mayer-
Vietoris, one shows that the same holds for X. Both spaces are simply-connected. However,
π3(X) = π3(S2) = Z and π3(Y) = π3(S5) = 0, hence X and Y cannot be homotopy equivalent.

Another reason why the disembodied homology groups Hi (–) do not contain enough
information is the dual theory: cohomology. Consider X = RP2. For simplicity, let us use
cellular homology. As a cell complex, X has one 0-cell e0, one 1-cell e1 and one 2-cell e2.
The cellular chain complex CCW

• (X) is Ze0 in degree zero, Ze1 in degree one and Ze2 in
degree two. The differential C1(X) → C0(X) sends e1 7→ 0, the differential C2(X) → C1(X)
sends e2 7→ 2e1. In other words, C•(X) is given by

· · · → 0→ Z
·2→ Z

0→ Z(2.1)
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where the rightmost Z sits in homological degree zero. By definition, the homology of X is
the homology of that chain complex and thus

H0(X) = Z

H1(X) = Z/2Z

Hk (X) = 0, for k ≥ 2.

(2.2)

Given an abelian group M, define M∨ = HomZ(M,Z). By dualizing homology we get{
H0(X)∨ = Z

H1(X)∨ = 0 for k ≥ 1.
(2.3)

On the other hand, the cellular cochain complex is obtained by dualizing C•(X), i.e.

Z
0→ Z

·2→ Z→ 0→ · · ·(2.4)

where the leftmost Z sits in cohomological degree zero. Hence,
H0(X) = Z

H1(X) = 0

H2(X) = Z/2Z

(2.5)

From now on our motto will be:
Homology is awesome, chain complexes are awesomer.

2.2. Quasi-isomorphisms. — Let us switch to the domain of simplicial complexes, which
is where the link between homotopy and chains is more direct. Given a simplicial complex
X, let’s write C•(X) for the complex of simplicial chains. If f : X → Y is a simplicial
map, it induces a chain map f∗ : C•(X) → C•(Y). Theorem 2.1 says that, if X and Y are
simply-connected, f is a homotopy equivalence if and only if f∗ induces an isomorphism
on homology. These chain maps are special and deserve a name.

Definition 2.3. — Let E, F be chain complexes. A quasi-isomorphism is a chain map E→ F
inducing an isomorphism Hi (E)→ Hi (F) for all i.

This leads to another slogan.
The analogue of studying simplicial complexes up to homotopy is studying chain
complexes up to quasi-isomorphism.

Of course, not every map f : X → Y is simplicial and so will fail to induce a chain map
C•(X)→ C•(Y). However, simplicial approximation comes to the rescue.

Theorem 2.4 (simplicial approximation). — Let X → Y be a map between simplicial
complexes. There exists a third simplicial complex Z (a barycentric subdivision of X) and
simplicial maps q : Z→ X, g : Z→ Y, such that q is a homotopy equivalence and g = fq.

Succinctly, at the level of spaces we have the diagram

Z

X Y

gq

f
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where the oblique maps are simplicial. At the level of complexes (of simplicial chains), while
the horizontal map does not exist, the roof still makes sense.

C•(Z)

C•(X) C•(Y)

qis

This is essentially the definition of the derived category: objects are chain complexes;
morphisms between two complexes E, F are given by (appropriate equivalence classes of)
roofs

P

E F

qis

where P→ E is a quasi-isomorphism.

3. Preliminaries

This section is a bit boring and serves as a warmup. The point is that most constructions
we are familiar with in the case of modules can be carried out in a more general and
abstract framework.

3.1. Modules. — Let R be a ring which, often simply due to laziness, will be assumed to
be commutative. Let C = Mod(R) be the category of (say, right) R-modules.

Remark 3.1. — Recall that a category C consists of objects M,N, . . . and morphisms
f : M→ N between objects. Composition of morphisms is associative. Every object comes
with an identity idM : M→ M, which acts as a unit for composition. The set of morphisms
between two objects M,N is denoted in various ways, such as C(M, N) or HomC(M, N) or
MorC(M, N) or [M,N]C and probably many others.

The category C = Mod(R) has a very rich structure: it is the prototype of an abelian
category. This means the following things.

1. The sets C(M, N) = HomR(M, N) have the structure of an abelian group, which is
bilinear with respect to composition of morphisms.

– In particular, C(M, N) has a distinguished element: the zero morphism 0M,N (or
simply 0).

– The group C(M,M) = EndR(M) has two distinguished elements: idM and 0M.
2. There is a zero object 0, such that C(0,M) = 0 = C(M, 0) for any object M ∈ C.

– An object M is the zero object if and only if idM = 0M.
– If M,N ∈ C are two objects, the zero morphism 0M,N is the composition

M→ 0→ N.
3. Given two modules M,N we can form their direct sum M⊕ N. This can be character-

ized as an object M⊕ N ∈ C equipped with four maps
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M N

M⊕ N

M N

iM iN

pM pN

satisfying the following equations.

pMiM = idM(3.1)

pNiN = idN(3.2)

pNiM = 0(3.3)

pMiN = 0(3.4)

iNpN + iMpM = idM⊕N(3.5)

– As a consequence, we have HomR(Z,M⊕ N) = HomR(Z,M)⊕HomR(Z, N) and
HomR(M⊕N, Z) = HomR(M, Z)⊕HomR(N, Z). Categorically, this is saying that
M⊕ N is both a product and a coproduct of the objects M,N.

4. Given a morphism f : M→ N we can form the kernel ker f . This can be characterized
as the fibre product M⊗N 0.

5. Dually, we have the cokernel coker f . This can be characterized as the pushout
NqM 0.

6. Given kernels and cokernels, we can define the image of a morphism: im f = ker(N→
coker f ).

7. The first isomorphism theorem holds. More precisely, call M/ ker f = coker(ker f →
M). There is a natural map M/ ker f → im f . This map is an isomorphism.

Remark 3.2. — What’s a fibre product and a pushout? At some point I should write this
up. In the specific case of Mod(R) this is easy to do.

Let p : M → P and q : N → P be two morphisms. Then their fibre product M ×P N is
defined as the submodule of M⊕ N given by those (x, y) such that p(x) = q(y).

Let i : P→ M, j : P→ N be two morphisms. Then their pushout MqP N is defined as
the module M⊕ N quotiented out by the submodule given (i(z), –j (z)).

These two constructions satisfy a universal property.

Digression 3.3. — The object M/ ker f = coker(ker f → M) is sometimes called the coimage
coim f . The first isomorphism says that the natural map coim f → im f is an isomorphism
(in particular, the notion of coimage is unnecessary).

Definition 3.4. — Let C be a category. We say C is additive if it satisfies (1)–(3) above,
abelian if it satisfies (1)–(7).

In other words, an abelian category behaves very much like Mod(R): the sets C(M, N)
are abelian groups, there is a zero object, direct sums, kernels, cokernels and the first
isomorphism theorem holds. Here are some examples.
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Example 3.5. — If R is a noetherian ring (which will be the case for all rings considered in
these lectures) we write Coh(R) ⊂ Mod(R) for the subcategory of finitely generated R-modules.
This is an abelian category.

Example 3.6. — Let X be a variety. The category Coh(X) of coherent sheaves on it is
abelian.

Example 3.7. — The category of projective R-modules is additive but (typically) not
abelian. Why?

Example 3.8. — Let G be a discrete group. The category of finite dimensional complex
representations RepC(G) is an abelian category. It also coincides with Coh(BG) where BG is
the quotient stack [pt/G].

Example 3.9. — Let Q be a quiver (aka a direct graph), which consists of a set of vertices
I and a set arrows E together with maps s, t : E→ I sending an arrow to its source vertex
and target vertex. A representation of Q is the assignment of a C-vector space Vi for each
i ∈ I and a linear map e : Vs(e) → Vt(e) for each arrow e ∈ E. Let’s see some examples.

– The trivial quiver Q1 consists of one vertex and no arrows. Obviously RepQ1 = Mod(C),
the category of C-vector spaces (or the category of sheaves on a point).

– The Jordan quiver Q2 consists of one vertex and one loop. We have RepQ2 =
Mod(C[x]).

– The Kronecker quiver Q3 has two vertices v1, v2 and two arrows v1 → v2. One can
show that D(RepQ3) = D(P1), while Coh(P1) 6= RepQ3.

Example 3.10. — The category of Banach spaces and bounded linear maps is additive.
It also admits kernels and cokernels. Indeed, if f : X → Y then coker f = Y/f (X) is the
quotient of Y module the closure of the set-theoretic image of f . However, it is not abelian.
The reason is that the first isomorphism theorem does not hold. Take X = C0([0, 1]) the
space of continuous R-valued functions on the compact unit interval. Take Y = L1([0, 1]).
The inclusion X → Y is linear and continuous and has trivial kernel. The set-theoretic
image is however dense in Y, therefore the inclusion also has trivial cokernel. But X→ Y is
very far from being an isomorphism.

Example 3.11. — Another good non-example is the category of filtered vector spaces.
Why?

Digression 3.12. — The categories above are examples of quasi-abelian categories, which
sit in between abelian and additive ones. Depending on what you do, you will never care
about these. But filtered vector spaces are most definitely an important concept.

The categories we are interested in will also have an additional piece of structure, coming
from the fact that we are working over a fixed field. Indeed, if R is an algebra over C,
the set HomR(M, N) is not just an abelian group, but also a C-vector space. We call these
categories C-linear.

Remark 3.13. — If R is a commutative C-algebra, the set HomR(M, N) is not just a C-
vector space, but actually an R-module! However, in contrast to the things we listed above,
in general there is no way to view C(M, N) as an object of C. A cheap example: take R
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non-commutative, then HomR(M, N) cannot always be equipped with an R-module structure.
A better example: take C = Coh(X).

For R a commutative ring, when we wish to emphasize that HomR(M, N) is viewed as an
object of Mod(R) we write HomR(M, N). This is sometimes called the inner hom object.

From now on we will freely use the language of abelian categories. The way to survive is
to simply pretend they are sub-categories of modules over a ring.

Digression 3.14. — There’s also rigorous ways of dealing with this. Here are two. The first
is to invoke the Freyd-Mitchell embedding theorem, which essentially says that if you have
a diagram in some abelian category, there exist some crazy ring R and a funky way to
embed that diagram in Mod(R). This is psychologically reassuring, as one can literally treat
objects as modules (but one has to be careful about the precise statement of the theorem, to
avoid silly mistakes). The second, is to use the Yoneda lemma. This is a more elementary
approach and has the big advantage of not relying on a big theorem. It is for example
explained in Aluffi’s book Algebra Chapter 0.

Definition 3.15. — Let C, D be categories. A functor F : C → D assigns to each object
M ∈ C an object F(M) ∈ D together with maps C(M, N)→ D(F(M), F(N)), taking f : M→ N
to F(f ) : F(M)→ F(N). All this data satisfies: F(idM) = idF(M) and F(g ◦ f ) = F(g ) ◦ F(f ).

Definition 3.16. — Let C → D be a functor between additive categories. We say F is
additive if, for all M, N, the induced map C(M, N)→ D(F(M), F(N)) is a group homomorphism.

Example 3.17. — Let M ∈ Mod(R) be a module. Then F(N) = M ⊗R N defines a functor
from Mod(R) to itself. This functor is additive.

Example 3.18. — Consider instead the assignment F(M) =
∧kM. This defines a functor

F : Mod(R)→ Mod(R). This functor is typically not additive. Why?

We only need to know two things about additive functors.

Proposition 3.19. — Additive functors preserve zeros and direct sums. This means F(0) = 0
and F(M⊕ N) = F(M)⊕ F(N).

Proof. — Let M ∈ C be any object. Since F is a functor, F(idM) = idF(M). Since F is additive,
F(0M) = 0F(M). As we mentioned earlier, we can recognize whether an object M is zero by
checking 0M = idM. For direct sums, we use the characterization in terms of inclusions i
and projections p given above, which are all preserved under an additive functor.

3.2. Exactness. — In an abelian category, such as Mod(R), we can talk about exact
sequences, let us recall what these are all about.

Definition 3.20. — The sequence M
f→ N

g→ P is exact if

– g ◦ f = 0
– the natural map im g → ker f is an isomorphism.

In general a sequence of morphisms · · · → Mi → Mi+1 → · · · is exact if, for all i,
Mi–1 → Mi → Mi+1 is exact.
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Remark 3.21. — Notice two things.

– g ◦ f = 0 implies im g ⊂ ker f
– to ensure exactness, we are requiring coker(im f → ker f ) = 0.

Exercise 3.22. — A sequence 0→ M→ N is exact iff M→ N is injective (ie ker f = 0).
A sequence M→ N→ 0 is exact iff M→ N is surjective (ie coker f = 0).

Definition 3.23. — A short exact sequence is an exact sequence of the form

0→ A→ B→ C→ 0(3.6)

which means A→ B is injective, B→ C is surjective and im(A→ B) = ker(B→ C).

Proposition 3.24. — Any morphism f : M→ N gives rise to the two exact sequences

0→ ker f → M→ im f → 0(3.7)

0→ im f → N→ coker f → 0(3.8)

Definition 3.25. — A functor F : A→ B between abelian categories is exact if, for all short
exact sequence 0→ A→ B→ C→ 0 in A, the sequence 0→ F(A)→ F(B)→ F(C)→ 0 is
short exact in B.

4. Complexes

In this section we will finally see our protagonist: the derived category. However, we
will have to wait a little before we understand how to work with it. Let us fix an arbitrary
additive category C. To fix ideas, we can pretend C = Mod(R) or, for example, its subcategory
of projective modules.

Definition 4.1. — A complex (E•, d•E• ) in C is a collection {Ep}p∈Z of objects Ep ∈ C and

morphisms dpE• : E
p → Ep+1 such that dp+1E• ◦ d

p
E• = 0.

Remark 4.2. — The object Ep is sometimes called the p-chains (or co-chains, since we are
using cohomological indexing). The morphisms dp : Ep → Ep+1 are called the differentials
(or sometimes boundaries, but usually when one uses homological indexing).

The best way is to represent a complex is diagrammatically as a sequence

· · · → Ep–1
d→ Ep

d→ Ep+1 → · · ·(4.1)

where, to avoid going nuts, we omit all subscripts and superscripts from the differentials.
Abusing notation we say that the sequence above is a complex if d2 = d ◦d = 0. Notationally,
we will also drop the • superscript and simply say “E is a complex.”

Remark 4.3. — By reindexing, we can pass from “cohomological” to “homological” nota-
tion. Explicitly, given a (cochain) complex E• we can form a (chain) complex E• by defining
Ei = E–i . The differential Ei → Ei–1 now will decrease the degree. The difference is purely
a matter of preference (and indicates whether one was brought up as a topologist or a
geometer).
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Definition 4.4. — A morphism between chain complexes f : E → F is a collection of
morphisms f p : Ep → Fp such that d ◦ f = f ◦ d .

In other words, the following diagram commutes

Ep Ep+1

Fp Fp+1

d

f f

d

for all p ∈ Z. We write Ch(C) for the category of chain complexes in C.

Proposition 4.5. — If C is abelian, the category Ch(C) is also abelian.

Proof. — Sketch the proof as an exercise. Hint: kernels and cokernels are computed
levelwise, e.g. (ker f )p = ker(f p : Ep → Fp).

4.1. Homology. — Homology is the real hero of these notes. Let’s assume from now on
that C is abelian.

Definition 4.6. — Let E be a complex. Define Zp = ker(d : Ep → Ep+1) and Bp =
im(d : Ep–1 → Ep). The p-th cohomology of E is the object

Hp(E) = Zp/Bp = coker(Bp → Zp) =
ker(Ep → Ep+1)

im(Ep–1 → Ep)
(4.2)

Remark 4.7. — The object Zp is called the p-cycles (or rather, cocycles), while Bp the p-th
boundaries. We sometimes refer to Hp(E) just as the homology of E the p-th homology instead
of cohomology. After all, this homology vs cohomology business is purely bookkeeping.

Exercise 4.8. — Let E be a two-term complex, meaning Ei = 0 for all i except i = 0, 1.
Call f : E0 → E1. Then H0(E) = ker f , H1(E) = coker f .

Proposition 4.9. — Let f : E→ F be a chain map. It induces a map Hp(f ) : Hp(E)→ Hp(F),
for each p. Even better, Hk : Ch(C)→ C defines an additive functor.

Proof. — Exercise.

4.2. Quasi-isomorphisms. — The following is the key notion to define the derived
category.

Definition 4.10. — A chain map f : E→ F is a quasi-isomorphism if the induced map in
homology Hk (f ) : Hk (E)→ Hk (F) is an isomorphism for all k.

Remark 4.11. — We sometimes abbreviate “quasi-isomorphism” to just “qis”.

We are now ready for the definition of the derived category! One of our motivating
examples was simplicial homology. Since we wanted to treat homotopy equivalent simplicial
complexes as equal, we would have to treat quasi-isomorphic chain complexes as equal too.

Definition 4.12 (First attempt). — The derived category D(C) has for objects chain com-
plexes in C, while the morphisms are obtained by formally declaring all quasi-isomorphisms
to be isomorphisms.
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The process of formally inverting morphisms is the categorical analogue of inverting
elements in a ring. For example, if we take a ring R and a subset of elements S ⊂ R, its
localization R[S–1] is defined by adding formal symbols 1/s for each s ∈ S. We are so used
to this procedure that we feel the element 1/s to be a real, concrete and legitimate thing.

How would we do this at the categorical level? The category Ch(C) plays the role of
R and the class of quasi-isomorphisms plays the role of S ⊂ R above. Say q : E → F is
quasi-isomorphism of chain complexes in C. This q might not be an isomorphism (just as
s ∈ R above might not have originally been invertible). The category D(C) provides a formal
inverse q ′ : F→ E (playing the role of 1/s in R[S–1]).

Just as an element r could be multiplied with 1/s to obtain r/s, we also allow the formal
inverses q ′ to be composable with actual morphisms in Ch(C). In other words, a morphism
E→ F in the derived category should be a string

E
qis← E1 → E2

qis← E3 → · · · ← En → F(4.3)

which in itself is already frightening. Moreover, one should decide when two strings define
the same morphism E→ F, which clearly leads to a combinatorial mess (not to mention
set-theoretic issues). The reason this mess does not arise in localizing a ring is that one
typically assumes S is a multiplicatively closed subset, which allows all elements of R[S–1] to
be written as r/s modulo a simple equivalence relation. For this “calculus of fractions” to
apply to D(C) we need to introduce first the chain homotopy category. This is why we need
to wait until the next section to actually be able to work with D(C).

4.3. Digression on localizations. — There is a general procedure, called Gabriel-Zisman
localization. Recall first how you localize a ring.

Definition 4.13. — Let R be a ring and let S be a multiplicatively closed subset. The
localization R[S–1] is a ring together with a ring homomorphism φ : R→ R[S–1] such that

– The element φ(s) is invertible in R[S–1] for all s ∈ S.
– For any other ring homomorphism ψ : R→ A where, for all s ∈ S, ψ(s) is invertible

in A, there exists a unique ring homomorphism ψ′ : R[S–1]→ A such that ψ′ ◦ φ = ψ.

Let us define how to localize categories.

Definition 4.14. — Let C be any category and let S be a class of morphisms in C. The
localization of C with respect to S is a category C[S–1] together with a functor φ : C→ C[S–1]
such that

– The morphism φ(s) is an isomorphism, for all arrows s ∈ S
– For any functor ψ : C→ D such that, for all s ∈ S, ψ(s) is an isomorphism in D, there
exists a unique functor ψ′ : C[S–1]→ D such that ψ′φ = ψ.

Digression 4.15. — (a digression within a digression? this must be useless) Notice that
we required the functor ψ′ to be unique. This implies that the localized category C[S–1] is
characterized up to isomorphism, rather than equivalence. This feels wrong (and in fact it’s
an example of what is called an evil concept in category theory). The correct thing to do is
to require ψ′ to be unique up to natural transformations. But no one cares.
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As mentioned earlier, to be able to work with morphisms in the localization C[S–1] we
would need some condition on our S. Indeed, when S is a localizing class of morphisms,
things become reasonable. Unfortunately, for quasi-isomorphisms to form a localizing class
in chain complexes, we need to pass to the chain homotopy category. In any case, let’s end
this digression with the formal definition of the derived category.

Definition 4.16 (Formal definition). — Let C be an abelian category. Let S be the class
of all quasi-isomorphisms in Ch(C). The derived category D(C) of C is the Gabriel-Zisman
localization Ch(C)[S–1].

4.4. Embedding C into Ch(C). — Notice that we can take an object M ∈ C and view it as
a complex M[0]

· · · → 0→ M→ 0→ · · ·(4.4)

with M sitting in degree zero. A morphism M→ N extends automatically to a chain map
M[0] → N[0]. Thus we get a functor C → Ch(C) sending M to M[0]. This functor is fully
faithful and exact.

Remark 4.17. — Alternatively, we could also consider M[k] which views M as sitting in
degree –k, i.e. Hi (M[k]) = Hi+k (M[0]) is zero for i 6= –k and M for i = –k. This is compatible
with the shift functor we introduce in the next section.

Proposition 4.18. — Let F : A → B be a functor between additive categories. Then F
extends to a functor F̄ : Ch(A)→ Ch(B). In other words, upon restriction we have F̄|A = F

Proposition 4.19. — Let F : A→ B be an exact functor between abelian categories. Then
the extension F̄ : Ch(A)→ Ch(B) is also exact.

Remark 4.20. — Let M be an object of C. From now on we will write M to indicate both
the object of C and the object M[0] of Ch(C). For F a functor as above, we will simply write
F for its extension F̄.

4.5. Snakes. — This is probably what makes the whole subject useful in the first place.

Lemma 4.21. — Let 0→ E→ F→ G→ 0 be a short exact sequence of chain complexes.
For each k, there is a functorial map Hk–1(G) → Hk (E) (sometimes called the connecting
morphism) such that the sequence

· · · → Hk–1(G)→ Hk (E)→ Hk (F)→ Hk (G)→ Hk+1(E)→ · · ·(4.5)

is exact (this sequence is called the long exact sequence in homology).

The proof is a standard diagram chase once one knows the snake lemma (which is also a
diagram chase). Notice that when E, F, G are two-term complexes, meaning Ei = 0 = Fi = Gi

for all i except for i = 0, 1, this is precisely the snake lemma.

Remark 4.22. — Explicitly, functoriality of the connecting morphism means that if
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0 E F G 0

0 E′ F′ G′ 0

is a morphism of short exact sequences of complexes (meaning that the two squares
commute) then the diagram

Hk (G) Hk+1(E)

Hk (G′) Hk+1(E′)

commutes for all k.

5. The chain homotopy category

We continue our endless discussion of homological algebra. In what follows, C denotes
a random additive category. Sometimes, we’ll also assume C is abelian (i.e. whenever we
mention homology of a complex or exactness of a sequence).

5.1. Shift. — Let E ∈ Ch(C) be a chain complex. We define E[1] to be E but with everything
shifted one place to the left.

E : · · · Ep–1 Ep Ep+1 · · ·

E[1] : · · · Ep Ep+1 Ep+2 · · ·

d d d d

–d –d –d –d

The change in signs is compulsory and is just an annoying fact of life. Notice that
Hk (E[1]) = Hk+1(E).

Remark 5.1. — Let X be a topological space. The suspension ΣX of X is the space
I × X/ ∼ where the relation identifies (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1). The suspension
isomorphism states that H̃k+1(ΣX) = H̃k (X). This is why the shift E[1] defined above is
sometimes called the suspension.

Digression 5.2. — The analogy between shift and suspension can be made more precise
but the only way I know how is by using homotopy pushouts (making this precise could be
part of a presentation, for example if one wants to learn the basics of ∞-categories).

Definition 5.3. — More generally, for any integer k ∈ Z we define the shift by k of a
complex E by {

E[k]n = En+k

dnE[k] = (–1)kdn+kE
(5.1)
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For a chain map f : E → F we have f [k] : E[k] → F[k] defined by f [k]n = f n+k . Thus we
have defined an exact functor [k] : Ch(C)→ Ch(C). This functor is moreover an equivalence
of categories.

Notice that [k] ◦ [h] = [k + h].

Remark 5.4. — Look up what an equivalence of categories is.

5.2. Homotopies. — Let f , g : X→ Y two simplicial maps between simplicial complexes.
Assume that f and g are homotopic. Then, by suitably turning I × X into a simplicial
complex, we find a relation between the chain maps f∗, g∗ : C•(X)→ C•(Y). This relation
translates to the following.

Definition 5.5. — Let f , g : E → F be chain maps, i.e. morphisms in Ch(C) for some
additive category C. We say f is homotopic to g and write f ∼ g if the difference f – g is
null-homotopic. We say f – g : E→ F is null-homotopic if there is a sequence sn : En → Fn–1

such that the following holds.

f n – gn = sn+1dnE + dn–1F sn(5.2)

Proposition 5.6. — Being homotopic is an equivalence relation for Ch(C), in the sense that
if f ∼ g then f ◦ h ∼ g ◦ h and k ◦ f ∼ k ◦ g for any composable morphisms k, h.

Definition 5.7. — Let C be an additive category. We define K(C), the chain homotopy
category to have objects chain complexes in C and K(C)(E, F) = Ch(C)(E, F)/ ∼ where f ∼ g if
f and g are homotopic.

Unlike Ch(C), the category K(C) is (typically) not abelian. It is the first example of a
triangulated category.

Proposition 5.8. — Homotopic maps induce the same map in homology. Concretely, let
f , g : E→ F be two chain maps. If f ∼ g then Hk (f ) = Hk (g ) for all k.

Proof. — Since homology is an additive functor, it suffices to show that, for f null-
homotopic, Hk (f ) = 0 for all k. This follows from the definitions.

Definition 5.9. — Two complexes E, F are homotopically equivalent if they are isomorphic
in K(C). In other words there are chain maps f : E → F, g : F → E such that gf ∼ idE,
fg ∼ idF.

Remark 5.10. — Say f and g are homotopic chain maps E→ F. In how many ways can
they be homotopic? Let’s find out. Pick a homotopy s between them. Suppose t is another
homotopy, then t – s : E→ F[–1] is a legitimate chain map. Conversely, a degree minus one
chain map h : E→ F[–1] gives rise to a homotopy by taking s + h. In other words, the set of
homotopies between f and g is a torsor for Ch(C)(E, F[–1]).
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5.3. Mapping Cones: topology. — The category of abelian groups (i.e. chain complexes
sitting in degree zero) is the prototype of an abelian category: it has direct sums, kernels,
cokernels, short exact sequences and the first isomorphism theorem holds. We will see that
the derived category (i.e. chain complexes up to quasi-isomorphism) is the prototype of a
triangulated category. These categories also have direct sums, but short exact sequences are
replaced by exact triangles and kernels and cokernels are conflated into cones. Let’s sketch a
few ideas.

Let X be a simplicial complex. The cone over X is the topological space CX defined by
taking X × I and identifying (x, 0) with (x′, 0) for all x, x′ ∈ X. This space can be given
a simplicial structure as follows. We add an extra vertex t, the tip of the cone. For each
vertex v, we now add a 1-simplex [t, v] connecting that vertex to the tip of the cone. For
each 1-simplex [v0, v1] we add a 2-simplex [t, v0, v1]. In general, for each original k-simplex
[v0, . . . , vk ] we add a k + 1-simplex [t, v0, . . . , vk ].

Let’s have a look at the complex C•(CX) of simplicial chains. In degree zero we have
C0(CX) = Zt ⊕ C0(X), in degree one C1(CX) = C0(X) ⊕ C1(X), where we implicitly view a
0-simplex [v] as the 1-simplex [t, v]. In general Cn(CX) = Cn–1(X) ⊕ Cn(X). Now, given a
simplex [v0, . . . , vk ], its boundary is∑

i

(–1)i [v0, . . . , v̂i , . . . , vk ].(5.3)

Sticking t’s everywhere has the effect of changing some signs

∂CX[t, v0, . . . , vk–1] = [v0, . . . , vk–1] +
∑
i≥0

(–1)i+1[t, v0, . . . , v̂i , . . . , vk–1].(5.4)

We can rewrite the boundary map in matrix form as follows.

∂CX =
(
–∂ 0
id ∂

)
.(5.5)

At this point, it’s easy to check that ∂CX is a differential and that Hi (CX) = 0 for i > 0.
Let now f : X→ Y be a map. The mapping cone Mf is given by gluing the cone CX with

Y by the rule (x, 1) ∼ f (x) for all x ∈ X. If f is simplicial, Mf can be given the structure
of a simplicial complex. When f is moreover the inclusion of a subcomplex, this is the
topologists way of taking a cokernel: since we are taking X and making it contractible (it’s
been coned off).

Let’s have a look at the chain complexes, assuming X is a subcomplex of Y. The vertices
of Mf are given by the vertices of Y plus the extra vertex t, the tip of the cone. At the level
of chain complexes, this means

Ck (Mf ) = Ck–1(X)⊕ Ck (Y)(5.6)

where the boundary map sends an element in Ck–1(X) to

∂Mf
[t, v0, . . . , vk–1] = [f (v0), . . . , f (vk–1)] –

∑
i≥0

(–1)i [t, v0, . . . , v̂i , . . . , vk–1](5.7)
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which in matrix terms translates into

∂Mf
=
(
–∂ 0
f ∂

)
.(5.8)

Notice that f induces an inclusion C•(X) ⊂ C•(Y) and that there is a chain map C•(Y)→
C•(Mf ), which sends C•(X) to zero. Thus there is an induced map

C•(Y)/C•(X)→ C•(Mf )(5.9)

from the quotient complex (which is in degree k is equal to Ck (Y)/Ck (X)). One checks that
this map is a quasi-isomorphism. In other words, those two complexes should be considered
equal in the derived category! Once we give rigorous definitions we will see mapping cones
truly play the role of cokernels in the derived category.

5.4. Mapping cones: algebra. — Let now C be an additive category.

Definition 5.11. — Let f : E→ F be a morphism in Ch(C). The mapping cone Mf is defined
to be 

Mn
f = En+1 ⊕ Fn

dnMf
=

(
–dn+1E 0

f n+1 dnF

)
(5.10)

In other words it is the complex E[1]⊕ F with the differential twisted by f .

Notice this definition matches up with –dn+1E = dnE[1]. The mapping cone is sometimes
called (homotopy) cofibre or (homotopy) cokernel.

Remark 5.12. — If f is zero, then Mf = E[1]⊕ F.

Remark 5.13. — Suppose f : A → B is a morphism in C, which can be viewed as a
morphism of chain complexes in degree zero. The mapping cone Mf is the two term
complex

· · · → 0→ A
f→ B→ 0 · · ·(5.11)

with A sitting in degree –1. We have H–1(Mf ) = ker f , H0(Mf ) = coker f . So Mf is in some
sense playing the role of both kernel and cokernel of f .

Proposition 5.14. — If f ∼ g then Mf is homotopy equivalent to Mg .

Proof. — Exercise.
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5.4.1. From cones to exact sequences. — There are two obvious morphisms

αf : F→ Mf(5.12)

βf : Mf → E[1](5.13)

given by projection and inclusion.

αnf =
(

0
idFn

)
(5.14)

βnf =
(
idEn+1 0

)
(5.15)

Exercise 5.15. — Check αf , βf are indeed chain maps.

The mapping cone is a device that turns a chain map f into a short exact sequence.

Proposition 5.16. — Suppose C is abelian. Let f : E→ F be a chain map. The sequence

0→ F
αf→ Mf

βf→ E[1]→ 0(5.16)

is a short exact sequence of complexes.

Proof. — Exercise.

Remark 5.17. — Let’s go back to topology for a minute. We want to see what happens
when we take the cone of a cone (and then translate to chain complexes). Consider a map
f : X→ Y of topological spaces and let Cf be the mapping cone of f . There is a natural
inclusion α : Y → Cf . Let Cα be its mapping cone. One can show that Cα is homotopy
equivalent to the suspension ΣX.

Here is a sketch of the proof. The space Cα can be obtained by gluing the cones CX
and CY by declaring (x, 1) ∼ (f (x), 1). For any t < 1, call Zt the subspace of CX given by (x, s)
for s ≤ t. This is a subspace of CX and hence of Cα. Notice that Zt is homotopy equivalent
to CX. Now, pick 0 < t1 < t2 < 1. Call W the subspace of Cα given by CY and the subspace
of CX given by (x, s) with s ≥ t2. We can now slowly slide W down to the tip of CY. The
resulting space is homotopy equivalent to the suspension of X.

Let’s give the chain analogue of the remark above.

Proposition 5.18. — Let f : E→ F be a morphism of chain complexes. We can take Mαf ,
the mapping cone of the map αf : F→ Mf . There exists a (typically non-unique!) homotopy
equivalence φ : E[1]→ Mαf such that the diagram

F Mf E[1] F[1]

F Mf Mαf F[1]

αf βf –f [1]

φ

αf ααf βαf

commutes up to homotopy, i.e. it commutes in K(C).



MATH 566 - SPRING 2017 21

Proof. — Define φ : E[1]→ Mαf and the inverse (up to homotopy) ψ : Mαf → E[1] as

φn =

–f n+1

id
0

 ψn =
(
0 id 0

)
.(5.17)

We have ψφ = id, while sn : Mn
αf
→ Mn–1

αf

sn =

0 0 id
0 0 0
0 0 0

(5.18)

provides a homotopy between φψ and id. Details can be found in [Kashiwara-Schapira,
Lemma 1.4.2].

Remark 5.19. — The result wouldn’t be true in Ch(C), the map φ typically does not possess
an inverse on the nose, but only up to homotopy.

Warning 5.20. — This is of utmost importance (but also, depending on what you do,
irrelevant in practice). The map φ is not unique, even up to homotopy. We will see later a
criterion which guarantees uniqueness.

Lack of uniqueness can be problematic if we wish things to be sufficiently functorial.
There at least two possible solutions. The first is to use a more sophisticated theory (such
as dg-categories, model categories, derivators or∞-categories) which incorporates more
homotopy theory. The second, is to simply treat this as a fact of life and move on. We will
opt for the latter.

Remark 5.21. — The way we rephrase the warning above is by saying that taking cones is
not functorial. See the comments on the axioms below.

Proposition 5.22. — Suppose 0 → E
f→ F

g→ G → 0 is a short exact sequence of chain
complexes in Ch(C). The obvious map Mf → G is a quasi-isomorphism and moreover
φ ◦ αf = g .

Proof. — Exercise.

The proposition above once more confirms our intuition that mapping cones are replacing
kernels/cokernels.

5.5. Triangles. — Again, consider a chain map f : E→ F. The sequence F→ Mf → E[1]
is the prototype of what are called exact triangles.

Definition 5.23. — We call a sequence E → F → G → E[1] of morphisms in K(C) a
triangle Morphisms of triangles are what you expect (commutative diagrams in K(C)). A
triangle as above is called exact (or distinguished ) if there is a morphism f : E′ → F′ and an
isomorphism of triangles between E→ F→ G→ E[1] and E′ → F′ → Mf → E′[1].

Once again, in the definition above commutativity of diagrams and isomorphisms are
taken up to homotopy (not in Ch(C)).
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Remark 5.24. — Why the heck are they called triangles? Let’s say anytime we write E
+→ F

we really mean a map E→ F[1]. Then a triangle E→ F→ G→ E[1] can be drawn as

E G

F
+

Theorem 5.25. — The collection of exact triangles in K(C) satisfies the following properties.

1. The class of exact triangles is closed under isomorphisms.

2. The triangle E
idE→ E→ 0→ E[1] is exact.

3. Given f : E→ F, there exists an exact triangle E
f→ F→ G→ E[1].

4. The triangle E
f→ F→ G→ E[1] is exact if and only if the triangle F→ G→ E[1]

–f [1]→
F[1] is exact.

5. Given two exact triangles E
f→ F → G → E[1], E′

f ′→ F′ → G′ → E′[1] and a
commutative diagram

E F

E′ F′

f

u v

f ′

there exist a (non necessarily unique) w : G → G′ making the obvious diagram a
morphism of triangles.

6. Suppose we have two morphisms f : E→ F and g : F→ G. Even better, suppose we
have three exact triangles

E
f→ F→ Cf → E[1]

F
g→ G→ Cg → F[1]

E
gf→ G→ Cgf → E[1].

there exist a distinguished triangle

Cf → Cgf → Cg → Cf [1]

such that the following diagram is commutative
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E F Cf E[1]

E G Cgf E[1]

F G Cg F[1]

Cf Cgf Cg Cf [1]

f

g

gf

f f [1]

g

5.6. Comments about the axioms. —

1. This axiom is the type of stuff mathematicians live for.
2. Using the first axiom, this is equivalent to saying that, for any isomorphism f : E→ E′

the triangle E→ E′ → 0→ E[1] is exact. Now, cones want to be some gadget which
unites both kernels and cokernels. In an abelian category, a morphism f is an
isomorphism if and only if ker f = 0 coker f . This is what this axiom is all about.

3. Secretly, G wants to be cone(f ).
4. THIS is what makes the magic of derived functors work (i.e. turning short exact

sequences into long ones).
5. Again, G would like to be cone(f ) and G′ cone(f ′). Notice once again the non-

uniqueness of w. Taking cones is not a functor.
6. This last axiom is infamous (it’s kind of technical) and goes by the name of octahedral
axiom. This is because if you draw exact triangles as triangles it might look like an
octahedron.

Remark 5.26. — For the last time we remark that, in order to fix the lack of functoriality
of taking cones, one needs to “enhance” the category K(C) by viewing it as a dg-category or
∞-category. Using this more sophisticated framework, taking cones becomes the same as
taking a homotopy pushout (respectively∞-pushout).

5.6.1. More comments about the octahedral axiom. — Let’s face it, this octahedral axiom
looks kind of funky (maybe even scary). But it’s actually something we want to have,
because it’s basically the third isomorphism theorem. Indeed, consider M ⊃ N ⊃ P in
an abelian category. The third isomorphism theorem says (M/P)/(N/P) = M/N. Label
the inclusions as f : P → N and g : N → M. We may rephrase the theorem as saying
coker(gf )/ coker f = coker g or

coker
(
coker(f )→ coker(gf )

)
= coker g .(5.19)

Let’s go back to the octahedron and recall that mapping cones want to be (homotopy)
cokernels. Suppose you have a genuine chain map f : E → F. Any exact triangle will
be isomorphic to the standard one E → F → cone(f ) → E[1]. Given another chain map
g : F → G we can form F → G → cone(g ) → F[1]. We can also consider the composition
gf : E→ G and the triangle E→ G→ cone(gf )→ E[1]. The octahedral axiom boils down



MATH 566 - SPRING 2017 24

to checking that

cone
(
cone(f )→ cone(gf )

)
= cone(g )(5.20)

in other words, a “homotopy-cokernel” version of the third isomorphism theorem.
I recently learned a nice compact way of depicting the octahedral axiom (see notes by

Lo who in turn cites Bayer). Given a composition

F

E G

gf

gf

there is a commutative diagram

cone f

F

E G cone gf

cone g

gf

gf

where the (almost) straight lines are exact.

6. Triangulated categories

We can abstract the structure of K(C) and define general triangulated categories.

Definition 6.1. — A triangulated category consists of an additive category T together with
an autoequivalence [1] : T→ T and a collection of triangles (the exact triangles) satisfying
the axioms we listed above.

We typically write [k] = [1]k . A triangulated functor between triangulated categories
T1 → T2 consists of an additive functor F : T1 → T2 together with an isomorphism F[1] ' [1]F
such that exact triangles are sent to exact triangles.

Remark 6.2. — This is another unsatisfactory point of the theory. A triangulated category
is not a category satisfying some property, it is a category plus additional structure (the
collection of exact triangles). Once again, this problem goes away by considering more
sophisticated theories.

Given an exact triangle A→ B→ C→ A[1] we sometimes say that B is an extension if C
by A.

Definition 6.3. — Let T be triangulated and A be abelian. A functor F : T→ A is cohomo-
logical if, for any exact triangle A→ B→ C→ A[1], the sequence F(A)→ F(B)→ F(C) is
exact.
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Say F is cohomological and write Fk = F ◦ [k]. For any exact triangle A→ B→ C→ A[1]
we know that B→ C→ A[1]→ B[1] is exact. Therefore, we get a long exact sequence

· · · → Fk–1(C)→ Fk (A)→ Fk (B)→ Fk (C)→ Fk+1(A)→ · · ·(6.1)

Proposition 6.4. — If A→ B→ C→ A[1] is exact, then the composition A→ B→ C is
zero.

Proof. — By the axioms, A→ A→ 0→ A[1] is exact. Thus we can fill the column

A A 0 A[1]

A B C A[1]

id

id f φ

f g

with φ : 0→ C such that gf = φ ◦ 0 = 0.

Remark 6.5. — Notice that for A → B chain map, the composition A → B → cone is
zero in K although it’s typically non-zero in Ch.

Proposition 6.6. — Let W ∈ T. Then T(W, –) and T(–,W) are cohomological.

Proof. — Let’s do T(W, –). We want to show T(W,A)→ T(W, B)→ T(W, C) is exact. Since
A → C is zero, it follows T(W,A) → T(W, B) → T(W, C) is zero. Hence we need to show
that if α : W → B is such that W → B → C is zero, then there exists W → A such that
W→ A→ B is α.

W 0 W[1] W[1]

B C A[1] B[1]

α φ[1]

We have φ[1] = W[1]→ A[1]→ B[1], thus φ = φ[1][–1] does the trick.

Corollary 6.7. — Let

A B C A[1]

D E F D[1]

α

φ

β

ψ

γ

ω φ[1]

δ ε ζ

If φ,ψ are isomorphisms, then so is ω.

Proof. — By the Yoneda lemma, to show ω is an isomorphism it suffices to show that, for
any W ∈ T the induced map T(W, C)→ T(W, F) is an isomorphism. [If you don’t know what
the Yoneda lemma is, don’t worry. Just take what this as a (very plausible) general fact.]
Apply T(W, –) everywhere. We obtain a commutative diagram of abelian groups with exact
rows and where three out of four vertical arrows are isomorphisms. Done.

Corollary 6.8. — Let A
f→ B→ C→ A[1] be an exact triangle. Then f is an isomorphism

if and only if C = 0.
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Proof. — We first notice we have a morphism between exact triangles

A A 0 A[1]

A B C A[1]

id

id f id
f

and then everything follows from the proposition above.

Proposition 6.9. — Let C be abelian. Consider the functor H0 : K(C) → C. It is cohomo-
logical.

Proof. — Let A → B → C → A[1] be an exact triangle. By definition, it’s isomorphic
to E → F → cone(f ) for some chain map f : E → F. By rotating the original triangle if
necessary, it suffice to show that H0(F)→ H0(cone(f ))→ H0(E[1]) is exact. But we showed
above that 0→ F→ cone(f )→ E[1]→ 0 is actually a short exact sequence of complexes.
The result follows.

Proposition 6.10. — Suppose we have a (finite, for simplicity) family of exact triangles
Ai → Bi → Ci → Ai [1]. Then the triangle⊕

i

Ai →
⊕

Bi →
⊕

Ci →
⊕
i

Ai [1](6.2)

is also exact.

Proof. — Define A =
⊕

Ai , similarly B, C. By the axioms, there exists an exact triangle

A→ B→ Z→ A[1](6.3)

We have the diagram

A B C A[1]

A B Z A[1]

and we are tempted to invoke the axioms for the existence of a map C→ Z. However, the
top triangle is (a priori) not necessarily exact (otherwise we’d be done). So we do this in
steps. First, the axioms do imply the existence of morphisms

Ai Bi Ci Ai [1]

A B Z A[1]

which can added together to produce a morphism of triangles

A B C A[1]

A B Z A[1]
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Once again, we would like to use the two-out-of-three proposition, which implies C→ Z
is an isomorphism. However, the top triangle might not be exact, so we cannot use that
result. Nevertheless, we can apply T(W, –) and use that it is cohomological. At that point we
appeal to standard homological algebra of complexes which tells us that T(W, C)→ T(W, Z)
is an isomorphism for all W. Hence, by Yoneda, C→ Z is an isomorphism. Therefore the
top triangle is isomorphic to an exact one, hence it is itself exact.

Corollary 6.11. — Consider two objects E, F then the triangle

E→ E⊕ F→ F
0→ E[1](6.4)

is exact.

Proof. — We have exact triangles E → E → 0 → E[1] and 0 → G → G → 0. Add them
together and use the proposition above.

Corollary 6.12. — Let A → B → C → A[1] be an exact triangle. Suppose C → A[1]
is the zero morphism. Then the triangle is split, i.e. it is isomorphic to the triangle

A→ A⊕ C→ C
0→ A[1].

Corollary 6.13. — Let A→ B→ C→ A[1] be an exact triangle. Suppose there is B→ A
such that A→ B→ A is the identity. Then the triangle is split.

7. Derived categories (finally!)

Convention:— from now on I might write exact triangles as E → F → G, omitting the
morphism G→ E[1]. It shouldn’t create confusion.

We are ready for the definition of derived category. Notice that our starting point is the
chain homotopy category K(C). For example, this means commutative diagrams of chain
maps will actually commute only up to homotopy.

Definition 7.1. — Let C be an abelian category, its derived category D(C) is defined as
follows. The objects are the same as those of Ch(C) and K(C): chain complexes. Morphisms
D(E, F) are given by equivalence classes of diagrams in K(C) of the shape

Q

A B

qis

where Q→ A is a quasi-isomorphism (there is also a theory with the reverse chirality, where
Q → B is assumed to be a quasi-isomorphism). We declare two diagrams A ← Q → B,
A← R→ B to be equivalent if there exists a commutative diagram in K(C)

Q

A S B

R

qis

qis

qis
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However we still haven’t said how to compose morphisms, nor why D(C) should even be
an additive, let alone triangulated, category. Before we do so, let’s place this definition in a
slightly more general context.

Definition 7.2. — A complex E is acyclic if Hp(E) = 0 for all p ∈ Z.

Acyclic complexes form what [Kashiwara-Schapira] calls a null system, i.e.

1. 0 is acyclic
2. E is acyclic if and only if E[1] is acyclic
3. If E→ F→ G→ E[1] is an exact triangle with E, G acyclic then F is acyclic.

Remark 7.3. — A morphism f : E→ F in K is a quasi-isomorphism if and only if there is
an exact triangle E→ F→ G with G acyclic.

The remark and the properties above are all obvious since H0 is a cohomological functor.
Thus we see that forcing all quasi-isomorphisms to be zero is the same as declaring all

acyclic complexes to be zero.

Proposition 7.4. — The class of quasi-isomorphisms is what [Kashiwara-Schapira] calls a
(left and right) multiplicative system (which other people call a localizing class). This means
that

1. idE is a quasi-isomorphism for any E
2. if f : E→ F is a qism and g : F→ G is a qism then gf : E→ G is a qism
3. given maps E→ Z← F, with E→ Z a qism, there exists a commutative diagram

A F

E Z

qis

qis

with A → F a qism. Some thing but starting with E ← A → F and completing the
south-east corner of the diagram.

4. Say f , g : E→ F. The following are equivalent
(a) there is a qism q : F→ Z such qf = qg
(b) there is a qism t : A→ E such that ft = gt.

Proof. — 1. obvious
2. by the octahedral axiom (fun!), the sequence cone(f )→ cone(gf )→ cone(g ) is exact.

The first and third are zero, by assumption, hence cone(gf ) must also be zero (for
example because K(W, –) is cohomological).

3. We know we have an exact triangle E → Z → N with N acyclic. By using the
composition F→ Z→ N we get an exact triangle F→ N→ W. The axioms yield

W[–1] F N W

E Z N E[1]

By setting A = W[–1] we are done as A→ F must be a qism since N is acyclic. The
opposite situation with arrows reversed is analogous.
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4. Omitted.

Using these properties we can define composition in D(C) and make sure it’s well defined.
Indeed, suppose we have roofs in K(C)

Q R

A B C

qis qis

then we know there exists Q← S→ R with S→ Q a qism making the diagram commute

S

Q R

A B C

qis

qis qis

So we define the composition A ← Q → B with B ← R → C as A ← Q ← S → R → C.
Then we need to make sure it is well defined.

The derived category D(C) defined this way is the localization of K(C) along quasi-
isomorphisms. This means the following. We have a functor Q: K(C)→ D(C) leaving objects
fixed and taking a morphism f : E→ F to the roof

E

E F
The functor Q sends a quasi-isomorphism to an isomorphism. Moreover, for any category
T and functor F : K(C) → T which sends quasi-isomorphisms to isomorphisms, there is a
unique functor F̄ : D(C)→ T such that F = F̄ ◦Q. This property characterizes D(C).

Proposition 7.5. — The category D(C) is triangulated, the obvious functor Q: K(C)→ D(C)
is triangulated.

We can also characterize D(C) in the following way. The functor Q sends acyclic
complexes to zero. Moreover, Q is universal with respect to functors F : K(C)→ T where T is
triangulated and F sends acyclic complexes to zero.

Proof. — The only thing to say is that we declare a triangle in D(C) to be exact if it’s the
image of an exact triangle in K(C). The rest is just super tedious but follows directly from
the axioms.

Corollary 7.6. — The functor H0 descends to a well defined (and cohomological) functor
on D.

Proposition 7.7. — Consider K(C)→ D(C). Let E ∈ K. The following are equivalent.

1. E becomes zero in D.
2. There is F such that E⊕ F is acyclic.
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3. E is acyclic.

Proof. — If E is zero in D then the roof E ← E
0→ E must be equivalent to the identity.

This means there is Q such that Q
0→ E is a qism. Embed this in an exact triangle

Q→ E→ G→ Q[1]. Since Q→ E is a qism we have G is acyclic. Since Q→ E is zero, we
have G = E⊕Q[1].

Suppose now E⊕ F is acyclic. Then, by definition, Hn(E⊕ F) = Hn(E)⊕Hn(F) = 0 for all
n. Which implies E is acyclic.

Say now E is acyclic. This means the map E→ 0 is a qism and hence invertible in the
derived category. In other words E = 0 in D.

Proposition 7.8. — Say f : E→ F is a morphism in K. Then f is an isomorphism in D if
and only if f is a qism.

Proof. — Embed f in an exact triangle E → F → G →. Since f becomes an iso in D,
it means G = 0 in D (by general properties of triangulated categories). By the previous
proposition, G is acyclic. By taking H0 we see that f is a qism.

Proposition 7.9. — Say f : E→ F is a morphism in K. Then f = 0 in D if and only if there
exists a qism Q→ E such that Q→ E→ F is homotopic to zero if and only there is a qism
F→ R such that E→ F→ R is homotopic to zero.

Proof. — omitted.

Let’s have a look at an example.

Example 7.10. — Consider C = Coh(k), i.e. finite dimensional vector spaces over a field k
(or, more generally, an abelian category where any short exact sequence splits). Let E ∈ D(C),
then E '

⊕
i H

i (E)[–i].

Proof. — Let E be a chain complex of vector spaces. Call H =
⊕

i H
i (E)[–i] the chain

complex (with zero differentials) of its homology. Recall that Hp(E) = Zp(E)/Bp(E). But since
we are in vector spaces, we can split all quotients, so that Ep = Hp ⊕ Sp for some choice of
Sp . Thus we have a well defined map E→ H by projecting Ep to the first factor. This map
is obviously a quasi-isomorphism.

Proposition 7.11. — Let 0→ A→ B→ C→ 0 be a short exact sequence in Ch(C). Then
there exists C→ A[1] in D(C) such that A→ B→ C→ A[1] is an exact triangle.

Conversely, suppose we have an exact triangle A → B → C → A[1] in D(C) where
A, B, C ∈ C. Then it comes from a short exact sequence 0→ A→ B→ C→ 0 in C.

Proof. — Consider Z = cone(A → B). We know A → B → Z → A[1] is an exact triangle.
We saw earlier that there is a natural qism Z→ C. This now admits an inverse in D so that
we may define a triangle A→ B→ C→ A[1].

For the second statement, take H0.
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7.1. Reminder. — Before we go on, let’s remind ourselves how we got here. We started
with an abelian category C, for example C = Mod(R). We looked at chain complexes
Ch(C). Two chain complexes are isomorphic in Ch if there are isomorphic on the nose.
But this wasn’t good enough, so we declared homotopic maps to be equivalent, which
lead to the chain homotopy category K(C). Here, two chain complexes are the same if
they are isomorphic up to homotopy. But this wasn’t good enough, so we declared all
quasi-isomorphisms to be invertible, which lead to D(C), the derived category. Here, all
acyclic complexes become zero.

Let’s have a look at two examples. The chain complex of abelian groups

E : · · · → 0→ Z
id→ Z→ 0→ · · ·(7.1)

is not isomorphic to the zero complex. However, it is chain homotopy equivalent to it.
Hence, E and 0 are the same in K.

On the other hand

F: · · · → 0→ Z
·2→ Z→ Z/2Z→ 0→ · · ·(7.2)

is neither isomorphic to zero nor homotopy equivalent to it. However, the map F→ 0 is a
quasi-isomorphism (i.e. F is acyclic) hence F and 0 are the same in D.

7.2. Truncations. — Let E be a chain complex. Fix an index p, we define

τ≤pE: · · · → Ep–2 → Ep–1 → ker(Ep → Ep+1)→ 0→ · · ·(7.3)

τ≥p : · · · → 0→ coker(Ep–1 → Ep)→ Ep+1 → Ep+1 → · · ·(7.4)

and call them truncations of E. Clearly, a chain map f : E → F induces a map between
the truncations. One checks that τ : Ch(C) → Ch(C) is a functor, for whatever choice of
superscript. Moreover, if f is homotopic to g then τ (f ) is homotopic to τ (g ). Hence τ
descends to a functor τ : K(C)→ K(C).

We have obvious maps

τ≤pE→ E(7.5)

E→ τ≥pE(7.6)

Notice

Hi (τ≤pE) =

{
Hi (E) i ≤ p
0 i > p

(7.7)

and dually

Hi (τ≥pE) =

{
0 i < p

Hi (E) i ≥ p
(7.8)

Hence if E→ F is a qism, then τ (E)→ τ (F) will also be a qism. This means τ descends to
a functor τ : D(C)→ D(C).
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Proposition 7.12. — Let E be a complex. The following triangles are exact in D.

τ≤pE→ E→ τ >pE→(7.9)

τ≤p–1E→ τ≤pE→ Hp(E)[–p]→(7.10)

Hp(E)[–p]→ τ≥pE→ τ≥p+1(E)→(7.11)

7.3. More truncations. — We need to discuss some easy variants of D(C). We say a chain
complex E is bounded above if Ep = 0 for p � 0, bounded below Ep = 0 for p � 0. We
say E is bounded if it’s both bounded above and below. We write D–(C), D+(C), Db(C) for the
(isomorphism closures of the) subcategories of (respectively) bounded above, bounded below
and bounded chain complexes. These are triangulated subcategories of D(C).

Proposition 7.13. — Let E be a chain complex. Then E ∈ D–(C) if and only if Hi (E) = 0
for i � 0. Similarly for the bounded below and bounded subcategories.

Proof. — Suppose Hi (E) = 0 for i ≥ p. Then τ≤pE→ E is a quasi-isomorphism.

These subcategories are important when we’ll want to define derived functors.
Truncations can also be used to ‘filter’ a complex by its homology. Indeed, we may

consider the sequence

· · · τ≤p–1E τ≤pE τ≤p+1E · · ·

Hp(E)[–p] Hp+1(E)[–p – 1]

+ +

which we interpret as giving a filtration of E by (shifts of) objects in C. If we end up talking
about t-structures, we will make this more precise.

8. Derived functors

OK, derived categories are only useful because we have derived functors, so let’s see
what those are. Consider an additive functor F : A → B. This obviously extends to a
functor Ch(A)→ Ch(B) and in turn to a functor K(A)→ K(B), which we still denote by F. By
composing with K(B)→ D(B), we have a diagram

K(A) D(B)

D(A)

Q

which we wish to close up with some functor

K(A) D(B)

D(A)

Q
LF
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However, requiring that LF ◦Q = F is too strong of a condition. Hence, we require the next
best thing: Kan extensions.

Definition 8.1. — The left Kan extension of F along Q (or maybe of Q along F) is a functor
LF together with a natural transformation LFQ→ F which is universal. Explicitly, for any
other G: D(A)→ D(B) and transformation LF◦Q→ G there is a bijection [G◦Q, F]→ [LF, G].

In this context, LF is called the left derived functor of F. Dually, we can define right
derived functors.

8.1. Something more useful. — OK, but this definition is useless. How to compute LF
in practice? Let E be an object of A, or maybe even a complex. The point is that F(E) needs
to be ‘corrected’. We need to find a complex E′, quasi-isomorphic to E, which behaves
better with respect to F. Then LF(E) = F(E′).

Example 8.2. — Consider in Mod(R) the functor F(N) = N⊗R M for a fixed M. We know
that F is right exact in the sense that it takes a short exact sequence 0→ N′ → N→ N′′ → 0
to an exact sequence F(N′) → F(N) → F(N′′) → 0. To fix the lack of exactness on the
left, we need to derive F to the left. To achieve this, we must replace M with an improved
version of it. This means finding a complex P, where each Pi is a free module, and a
quasi-isomorphism between P and M. Then LF(N) = P ⊗ N will be our derived functor.
Notice P⊗ N is a chain complex, defined only up to quasi-isomorphisms, i.e. it’s only well
defined in D(R). Traditionally, one calls Tori (M, N) = H–i (LF(N)) = H–i (P⊗ N).

Let’s see how this works in general.

Proposition 8.3. — Let A be an abelian category. Suppose P is a generating additive
subcategory, where generating means that for any M ∈ A there is a surjection F � M
with F ∈ P. Then, given any complex E ∈ K–(A) there exists a complex P ∈ K–(P) and
a quasi-isomorphism P → E. Even better, the natural functor K–(A)/acy → D–(A) is an
equivalence.

In particular, if we wish to define LF on D–(A) we might as well define it on K–(P). We
call the complex P• quasi-isomorphic to E a resolution of E by objects in P.

Proof. — Consider E ∈ K–. Up to shifting, we can just assume Ei = 0 for i > 0. Also, let’s
switch to homological notation, for simplicity. The first thing we can do is find a surjection
P0 � E0. By composition, the map P0 → E0 → H0(P) is also surjective. Notice that we
have an exact sequence

0→ Z1 → E1 → E0 → H0 → 0

which induces an exact sequence

0→ H1 →
E1
B1
→ E0 → H0 → 0.

We now define F = E1
B1
×E0 P0, G = E × E1

B1

F = E ×E0 P0. By assumption, we can find a

surjection P1 � G. Pictorially,
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P1 G F P0

E1
E1
B1

E0

Notice that P1 → E1 → E0 = P1 → P0 → E0. Thus we have constructed a chain map

· · · 0 P1 P0 0 · · ·

· · · E2 E1 E0 0 · · ·

.

Moreover, one checks by inspection that P0/P1 = H0 and ker(P1 → P0)→ H1 is surjective.
Let us now define the next term. We know there is an exact sequence

0→ H2 →
E2
B2
→ Z1 → H1 → 0

By construction, we have a well defined surjection Z1(P) → Z1. Hence we can take fibre
products again, with end result

P2 G′ F′ Z1(P)

E2
E2
B2

Z1

Thus, we have constructed a chain map

· · · 0 P2 P1 P0 0 · · ·

· · · E3 E2 E1 E0 0 · · ·

.

such that Hi (P) → Hi is an isomorphism for i = 0, 1 and surjective for i = 2. We can
repeat this last step to construct the full resolution (induction). The second assertion is
plausible.

Let us mention two general facts we (not so) secretly just used in the proof above.

Lemma 8.4. — Let E be a chain complex. There is a short exact sequence

0→ Hp(E)→ Ep/Bp → Zp+1 → Hp+1 → 0(8.1)

Recall, Zp = ker(Ep → Ep+1), Bp = im(Ep–1 → Ep), Hp = Zp/Bp .

Lemma 8.5. — Suppose A→ C← B are morphisms in an abelian category A. Consider
the fibre product

F B

A C
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then ker(F→ B) = ker(A→ C). Moreover, if B � C is surjective, then F � A is surjective
and coker(F→ B) = coker(A→ C).

Remark 8.6. — Of course, one would want something similar to hold for the unbounded
derived category. This can be achieved, by using what are called K-projective (a.k.a.
q-projective a.k.a. ho-injective, depends whom you ask) resolutions. But it gets rather
technical.

The following proposition is psychologically comforting.

Proposition 8.7. — Suppose A has enough projectives and call P the subcategory of projec-
tive objects. Then K–(P) = D–(A).

Recall that an object P is projective if any short exact sequence 0→ A→ E→ P→ 0
splits. We say A has enough projectives if, given A ∈ A, there is a surjection P � A.

Proof. — We only need to show that acy ∩ K–(P) = 0. In other words, if E is an acyclic
bounded above complex with each Ei projective, then E is homotopy equivalent to zero
(and not merely quasi-isomorphic to zero).

To ease notation, we switch to homological indexing and assume Ei = 0 for i < 0. Since
E is acyclic, Bp = Zp for all p. Hence we have short exact sequences

0→ Zp+1 → Ep+1 → Zp → 0.

Let’s have a look at p = 0. Since Z0 = E0, which is projective, we can pick a splitting
E1 = Z0 ⊕ Z1. Since the direct summand of a projective object is also projective, it follows
Z1 is projective. Hence, E2 = Z1 ⊕ Z2 and thus Z2 is projective. By induction, we may pick
splittings of all those exact sequences. In turn, we may define a homotopy between the
identity of E and zero by using the splittings Ep → Zp → Ep+1.

Digression 8.8. — This is actually a general feature of (well behaved) localizations. Any
time you have a category C and take a localization C[S–1] you should expect to find a
subcategory CS ⊂ C which is equivalent to the localization. This happens for example with
sheaves. Indeed, take C to be the category of presheaves on a topological space (or site).
Typically one defines sheaves as a special class of presheaves. But one could also localize.
Indeed, declare a morphism E→ F of presheaves to be a local-isomorphism of it induces
an isomorphism on stalks. Then the localization of C at local-isomorphisms is equivalent to
the category of sheaves.

Digression 8.9. — Notice that in the digression above one needs to be careful not to fall
into set-theoretic traps. For example, it is well known that there is no fpqc sheafification of
a presheaf. Therefore the localization of presheaves with respect to fpqc-local-isomorphisms
is an ill-defined category (in a sense one can make precise). This is very much like Russell’s
set of all sets.

OK, how to we define derived functors then?

Definition 8.10. — Suppose F : A→ B is a right exact functor between abelian categories.
An additive subcategory P ⊂ A is called F-projective if

1. For any M ∈ A, there exists there exists P ∈ P and a surjection P � M



MATH 566 - SPRING 2017 36

2. if 0→ M→ P→ P′′ → 0 is short exact and P, P′′ are in P then M is also in P.
3. if 0→ P′ → P→ P′′ → 0 is short exact in A with P′, P, P′′ in P, then 0→ F(P′)→

F(P)→ F(P′′)→ 0 is short exact in B.

Let’s have a look at the composition K–(A) → K–(B) → D–(B). We want to define
D–(A)→ D–(B). We know that D–(A) = K–(P)/acy. Thus, it suffices to show the following.

Proposition 8.11. — With assumptions and notation as above, if P ∈ K–(P) is acyclic, then
F(P) = 0 in D–(B).

Proof. — Suppose P ∈ K–(P) is acyclic and (once more) let’s use homological indexing and
assume Pi = 0 for i negative. Then we have a short exact sequence

0→ Z1 → P1 → P0 → 0

By (2), Z1 ∈ P and by (3)

0→ F(Z1)→ F(P1)→ F(P0)→ 0

is still exact. We proceed by induction and conclude.

Remark 8.12. — This whole section works also backwards: with left exact functors, F-
injective categories and the bounded below derived category.

Definition 8.13. — Let F : A → B be a left exact functor between abelian categories.
Suppose RF: D+(A) → D+(B) exists. We say an object M ∈ A is F-acyclic if RiF(M) = 0 for
i 6= 0.

Proposition 8.14. — Suppose F : A→ B is an explicitly right derivable left exact functor
between abelian categories with right derived functor RF: D+(A)→ D+(B). Suppose we have
an exact sequence

0→ M→ C0 → C1 → C2 → · · ·

where the Ci are F-acyclic. We can form the complex

F(C•) = · · · → 0→ F(C0)→ F(C1)→ F(C2)→ · · ·

Then RF(M) = F(C•) = F(C•).

8.2. Composing functors. —

Proposition 8.15. — Suppose F : A → B is left exact and G: B → C is also left exact.
Suppose I is an F-injective subcategory and J is a G-injective subcategory. Suppose also
F(I) ⊂ F(J). Then I is G ◦ F-injective and R(G ◦ F) = RG ◦ RF.

This statement actually replaces spectral sequences. But we will not go into this right
now.

8.3. Functors of two variables. — We have two examples of functors of two variables: ⊗
and Hom. Deriving these deserves some detail, however we will just skip to the conclusion.
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8.3.1. Tensor. — Say A = Mod(R) and consider F(–, –) = –⊗R –. This functor is right exact
in both variables. To compute LF(M,N) we resolve either M or N by projective modules.

This turns out to give a well defined functor LF : D–(R)× D–(R)→ D–(R). We write M
L
⊗ N

for the derived tensor product and write TorRi (M, N) = H–i (M
L
⊗ N).

More explicitly, say E, F ∈ K–(A) are two complexes. We define the tensor product E⊗ F
as

(E⊗ F)k =
⊕
p+q=k

Ep ⊗ Fq(8.2)

d (x ⊗ y) = dx + (–1)kdy(8.3)

To compute E
L
⊗ F we need to replace E or F by a quasi-isomorphic complex P where Pk is

projective for all k.
In the global case, i.e. when A = Mod(OX) or Coh(X) then projective objects will not be

available. Nevertheless, it suffices to resolve either variable by vector bundles or flat sheaves
(not to be confused by vector bundles with a flat connection).

8.3.2. Hom. — This functor is a little trickier, as it is covariant in one variable and
contravariant in the other. In any case, the result is the same: if A has enough injectives
(which is the case for A = Mod(R) or, more generally, A = Mod(OX)) we just resolve one
variable by injectives.

Exercise 8.16. — Consider the functor FM(–) = Hom(M, –) for some fixed object M ∈ A.
Suppose there is a subcategory B ⊂ A which is FM-injective for any M. Then B is the
subcategory of injective objects. Similarly for GN(–) = Hom(–, N): the only category which
works is the category of projective objects. Since Mod(OX) will not have enough projectives
in general, we focus on the case of injectives.

For E, F complexes, we define the Hom-complex Hom•(E, F) by

Homk (E, F) =
⊕
q–p=k

Hom(Ap , Bq )(8.4)

dHom(f ) = dFf – (–1)kfdE.(8.5)

To compute RHom(E, F) we find I a complex of injectives quasi-isomorphic to F and compute
RHom(E, F) = Hom•(E, I).

We write

ExtiA(E, F) = Hi (RHom(E, F)).(8.6)

Proposition 8.17. — Assume A has enough injectives. Then

ExtiA(E, F) = HomD(A)(E, F[i]).(8.7)

Proof. — To compute Ext, we resolve F by a complex of injectives I. Then HomD(E, F[k]) =
HomK(E, I[k]). We notice that an element of Zk (Hom•(E, I)) is the same as a chain map
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E → I[k]. Moreover, an element f in Homk (E, I[k]) is a boundary if and only if it is null
homotopic. Hence,

Extk (E, F) = Hk (Hom•(E, I)) = HomK(E, I[k]) = HomD(E, I[k]) = HomD(E, F[k]).(8.8)

8.3.3. Yoneda Ext. — This realization makes the “cup-product” in Ext transparent. There
is a pairing

Exti (E, F)× Extj (F, G)→ Exti+j (E, G)(8.9)

given by composition. If we have E→ F[i] and F→ G[j ] (which is the same as F[i]→ G[i + j ])
we obtain E→ G[i + j ].

Exercise 8.18. — Let A, B ∈ A. Show there is a bijection between HomD(A, B[1]) and short
exact sequences (a.k.a. extensions)

0→ B→ E→ A→ 0

Moreover, using Baer sums, this becomes an isomorphism of abelian groups.
More generally, there is a bijection between HomD(A, B[n]) and exact sequences

0→ B→ E1 → · · · → En → A→ 0.(8.10)

This is ultimately due to the fact that given A→ B[n] we may embed it in an exact triangle
→ A→ B[n]→ E→ A[1]. Take a chain complex representing E, we may look at the long
exact sequence in cohomology, which tells us that the cohomology of E is A in one degree,
B in another and zero everywhere else. In other words, E can be represented by a complex

0→ E1 → · · · → En → 0

making the sequence

0→ B→ E1 → · · · → En → A→ 0

exact.

Certainly, the homological algebra we covered deserved more detail and care. However,
in the interest of time, we will content ourselves with we have learned so far and move on
to different things.

9. Algebraic propaganda

This section is not entirely rigorous and is completely unnecessary. We assume some
knowledge of smooth manifolds and vector bundles.

References:
– Nestruev, Smooth manifolds.
– Notes on Nick Addington’s website.

Let’s start with an old theorem. If X is a smooth manifold, write R[X] with the set of
smooth functions f : X→ R. The field of real numbers R includes in R[X] as the subset of
constant functions. Any two functions f , g ∈ R[X] can be added or multiplied together.
Thus R[X] has the structure of an algebra over R.
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Theorem 9.1 (cf Nestruev’s book on manifolds). — Suppose X and Y are smooth mani-
folds. Assume there is an isomorphism of R-algebras R[X] ' R[Y]. Then X is diffeomorphic
to Y.

The theorem says that functions on a manifold completely determine the manifold itself.
Actually, more is true. Any smooth map φ : X → Y induces a morphism (of R-algebras)
R[Y]→ R[X] by sending g : Y→ R to φ∗(g ) = g ◦ φ : X→ R. This “upper star” procedure,
defines a functor from Man, the category of smooth manifolds, to AlgR, the category of
commutative R-algebras.

Technically, the “upper star” functor does not go from Man to AlgR as it sends a
morphism X→ Y to a morphism R[Y]→ R[X], thus swapping the order of X and Y. To
fix this, we either define contravariant functors or we change the codomain from AlgR to
AlgopR , the opposite category.

Remark 9.2. — Given a category C, we write C(X, Y) or HomC(X, Y) or MorC(X, Y) for the
set of morphisms between the objects X and Y. We define the opposite category Cop to
have the same objects as C but where Cop(Y, X) = C(X, Y). To avoid going insane, a good
rule is to never write morphisms in the opposite category.

The more refined version of the theorem above is the following.

Theorem 9.3. — The functor Man→ AlgopR sending X to R[X] is fully faithful.

This theorem says that differential geometry is affine, i.e. the space X and its algebra of
functions R[X] are interchangeable.

Remark 9.4. — Let F : C → D be a functor and let X, Y be two objects in C. Since
morphisms are sent to morphisms, F induces a function i : C(X, Y)→ D(F(X), F(Y)). We say
F is full if i is surjective, faithful if i is injective.

We say F is essentially surjective if any object Z ∈ D is isomorphic to an object F(X).

There is also a theorem characterizing vector bundles in algebraic terms, but we’ll get
back to that later.

9.1. Going back. — The proof of the theorems above is contained in a book by Nestruev
and will not be reproduced here. But let’s at least catch a glimpse of the argument, at least
when X is compact. Suppose A = R[X] is the ring of functions on the manifold X. This ring
contains many interesting ideals. Indeed, let S ⊂ X be any subset, we can consider IS ⊂ A
to be

IS = {f : X→ R | f (s) = 0,∀s ∈ S}

in other words, f |S ≡ 0. Clearly, if T ⊂ S then IS ⊂ IT. The minimal subsets of X are
points, and these correspond to maximal ideals.

Proposition 9.5. — Let x ∈ X. Then Ix , the ideal of functions vanishing at x, is maximal.

Proof. — Consider the ring homomorphism R[X]→ R sending f to f (x). It is surjective as
R[X] contains the constant functions. Its kernel is precisely Ix . Hence R = R[X]

Ix , hence Ix is
maximal.
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Proposition 9.6. — Let I ⊂ R[X] be a maximal ideal. Then I = Ix for some x ∈ X.

Proof. — Consider S to be the set of x ∈ X such that f (x) = 0 for all f ∈ I. Assume S = ∅.
Then, for all y ∈ X we can find fy such that fy (y) 6= 0. In particular, we can find Uy a

whole neighbourhood of y where fy |Uy is nowhere zero. By compactness, we may choose
f1, · · · , fn such that U1 ∪ · · · ∪ Un = X and fj |Uj is nowhere zero. On the other hand,
f = f 21 + · · · + f 2n is nowhere zero and belongs to I. But then 1/f is well defined, contradicting
maximality of I. Hence S must contain at least one point x. In particular I ⊂ Ix and, by
maximality, I = Ix .

Sometimes the set of maximal ideals of a ring A is denoted MSpec A.

9.2. Vector bundles. — Let X be a manifold and let A be the ring of smooth functions.
Let E→ X be a smooth vector bundle on a smooth manifold. The set of sections is denoted
by Γ(E, X). Since each fibre Ex is intrinsically a vector space, Γ(E) inherits a lot of structure:
it is a module over A. The reason is intuitive: if s, t : X→ E are sections and f : X→ R is
a function then f (x)s(x) + t(x) makes sense fibrewise and varies smoothly as x changes.

It’s not surprising that we want to phrase this in categorical terms. Vector bundles on
X form a category, VectX. The objects are vector bundles E→ X and the morphisms are
smooth maps E → F which are linear on fibres and commute with the projection to X.
Modules over A also form a category, Mod(A).

Theorem 9.7 (sometimes called Serre-Swan). — Taking global sections produces a func-
tor

Γ : VectX → Mod(A)(9.1)

This functor is fully faithful. Its essential image consists of modules which are projective.

Recall that a module M is projective if and only if there is another module N, an integer
n and an isomorphism M⊕ N ' An. In other words, M is projective if it is a factor of a
free module.

Remark 9.8. — Given a functor F : C→ D, we define the essential image of F to be the set
of objects Y ∈ D such that there exists an object X ∈ C and an isomorphism F(X) ' Y.

Let us write Proj(A) for the category of projective modules. Global sections provides an
identification Vect(X) ' Proj(A) and the diagram

Vect(X) Proj(A)

? Mod(A)

∼
Γ

begs the question of whether there is some bigger category containing Vect(X), playing
the role of general modules. In algebraic geometry, the answer is provided by Coh(X), the
category of coherent sheaves.
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9.3. Not everything is affine. — Consider now X = S2. Since X is diffeomorphic to CP2,
we can view X as either a smooth or complex manifold. The section above tells us that, as
a smooth manifold, X and the of functions on it are interchangeable. However, the ring
H(X) of global holomorphic functions f : X→ C contains no information whatsoever (well,
we can deduce from it that X is non-empty and connected). Indeed, basic complex analysis
tells us that H(X) = C, i.e. the only global holomorphic functions are the constant ones.
This tells us that complex geometry is not affine. Algebraic geometry is the same. However,
algebraic varieties (and a similar story holds for complex manifolds as well) can be covered
by local pieces which are affine.

9.4. GAGA. — The extrinsic approach to studying varieties starts with complex projective
space PN = CPN. This dude is a complex manifold. A smooth projective variety is a complex
manifold X admitting a holomorphic closed embedding X ⊂ PN. It is an important fact
that any such X is actually algebraic. In other words, there exist homogeneous polynomials
f1, . . . , fr such that X = {p ∈ PN | f1(p) = 0 = f2(p) = · · · = fr (p)}. But more is true, any
holomorphic map between such varieties is algebraic. To summarize: we can forget about
the complex structure entirely and think in algebraic terms.

Here is a context where this line of thought is useful. Serre’s GAGA theorem says that
any holomorphic vector bundle E on X is algebraic. In particular, this means E can be
trivialized on a Zariski open cover! This is not obvious at all from the definitions.

Remark 9.9. — The Zariski topology on PN has for basis the subsets

D+(f ) = {p ∈ PN | f (p) 6= 0}

for f a homogeneous polynomial. The Zariski topology on X ⊂ PN is the induced one.
This is very different from the ordinary topology. Indeed, basic complex analysis shows
that on P1 it’s the same as the cofinite topology.

9.5. From bundles to sheaves. — It is important to generalize the notion of vector
bundle. Before we explain why, let’s fix some notation. If X is a variety (projective or
otherwise) we write OX for the trivial vector bundle X× C. More generally, if V is a vector
space over C, we write OX ⊗C V for the trivial vector bundle X× V. If E→ X is a vector
bundle, and x ∈ X, we write E(x) for the fibre of E over x. This fibre has the structure of
a complex vector space. A map of vector bundles E→ F on X, induces a linear map on
the fibres E(x)→ F(x) for all x. Given two vector bundles E, F their tensor product will be
denoted by E⊗X F or (more often) just E⊗ F.

Let V be a complex vector space and let P = P(V) be its projectivization. We can view
elements of P as 1-dimensional subspaces l ⊂ V (i.e. lines through the origin). There is an
important vector bundle on P, called the tautological bundle and denoted OP(–1). It can be
defined explicitly as a sub-bundle of OP ⊗C V as follows.

OP(–1) =
{
(l, v) ∈ P× V | v ∈ l

}
⊂ OP ⊗C V

Remark 9.10. — As a sidenote, the quotient of this inclusion is also a special vector
bundle on P. Indeed, the Euler sequence is the short exact sequence of vector bundles

0→ OP(–1)→ OP ⊗C V→ TP(–1)→ 0
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where TP(–1) = TP ⊗X OP(–1) by definition and TP is the tangent bundle of P. By tangent
bundle we mean the algebraic tangent bundle, which coincides with the holomorphic
tangent bundle of X when viewed as a complex manifold.

But let’s not get sidetracked. Let f ∈ V∗ be a non-zero linear form. Its kernel defines a
hyperplane W < V and we write H = P(W) for its projectivization.

There is a vector bundle map φ : O(–1)→ O defined by taking (l, v) to (l, f (v)). In other
words, φ acts as f fibrewise. Let us analyze the induced linear maps. Fix l ∈ PN.

Suppose l /∈ H. Then v is sent to f (v). We know that f (v) = 0 iff v ∈ W. Since v /∈ W,
as v ∈ l ( W, we have f (v) = 0 implies v = 0. Hence φ is an isomorphism on fibres, away
from H.

On the other hand, assume l ∈ H. A vector v in the fibre lives in W. Hence f (v) = 0
always. In other words, φ acts as the zero map fibres, when restricted to H.

Here comes the problem. Fibre by fibre, we could take the kernel (or cokernel) of the
map El → Fl . On P \ H it would be the zero vector space, but on H it would be C. Globally,
this kernel (or cokernel) would have to be some sort of vector bundle where the rank is zero
almost everywhere and jumps to one on H. To makes sense of these spiky vector bundles,
we need the notion of sheaf.

10. Sheaves, for real now

References:
– Kempf, Algebraic Varieties

Let X be a manifold. If U is an open subset, let C∞(U) be the ring of smooth functions
U→ R. If V ⊂ U we have a restriction map C∞(U)→ C∞(V). This data is what is called a
presheaf.

Definition 10.1. — More formally, there is a category Op(X) where objects are open subsets
U ⊂ X and Op(V, U) is a singleton if V ⊂ U and empty otherwise. If C is any other category
(for example sets, abelian groups, rings, C-vector spaces or C-algebras) a C-presheaf is
a functor Op(X)op → Set. More generally, the category of presheaves is the category of
functors Op(X)op → C. We write PSh(X, C).

Going back to our example: C∞ is moreover a sheaf, which means local data can be
glued to form a global datum. Concretely, say {Ui}i is an open cover of some open U and
that, moreover, fi ∈ C∞(Ui ) are functions such that fi |Uij = fj |Uji then there exists a unique
function f ∈ C∞(U) such that f |Ui = fi . Here Uij = Ui ∩ Uj .

On the other hand, take X = R and write B(U) ⊂ C∞(U) for the subring of smooth
bounded functions. This G is not a sheaf. Indeed, take the cover Un = (–n, n) of R. Take fn
to be fn(x) = x. Then fi |Uij = fj |Uij but there is no global f ∈ B(R), because the identity is
not bounded on R. We write Sh(X, C) ⊂ PSh(X, C) for the subcategory of sheaves.

Digression 10.2. — As mentioned earlier, we could view Sh as a localization of PSh.
Indeed, declare a morphism F→ G of presheaves to be a local-isomorphism if there exists
an open cover Ui such that the induced map (of presheaves on Ui ) F|Ui → G|Ui is an
isomorphism for all i. Then Sh(X, C) = PSh(X, C)[local-iso–1].
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Digression 10.3. — Note that for the result above to be true one might need some assump-
tions on the category C (which are all satisfied in the cases we are considering). If instead of
X one is working in an arbitrary site (for example the étale site of a variety) one should be
wary of set-theoretic difficulties (which for example occur for the fpqc site).

Another natural source of sheaves are vector bundles. Let π : E→ X be a smooth vector
bundle. Then we define Γ(U, E) to be the set of smooth maps s : U→ E such that πs = idU.
(these maps are typically called sections of the vector bundle E) This Γ(–, E) is a sheaf on X.

10.1. Sheaves of modules. — Notice that our first example C∞ was a sheaf where each
C∞(U) was a ring and all maps C∞(U)→ C∞(V) were ring homomorphisms. On the other
hand, Γ(U, E) is not a ring. But Γ has a module structure. Indeed, given a smooth function
f ∈ C∞(U) and a section s ∈ Γ(U, E) the multiplication fs ∈ Γ(U, E) is well defined. In other
words, Γ(U, E) is a module over the ring C∞(U). We say C∞ is a sheaf of rings and Γ(–, E)
is a sheaf of C∞-modules.

The mantra of sheaves of modules is that they are just like modules. We will take
everything we can with modules over a ring and just do the same thing one open subset
U ⊂ X at a time.

Suppose X is a topological space and OX is a sheaf of rings. For example, X a smooth
manifold and OX(U) is the set of smooth functions f : U→ R, for U ⊂ X. Or maybe, X a
complex manifold and OX(U) is the set of holomorphic functions f : U→ C. Since OX is a
sheaf of rings, we can define sheaves OX-modules. These form a category Mod(OX).

Definition 10.4. — Suppose X is a topological space and OX is a sheaf of rings. Let F be
a sheaf on X. We say F is a sheaf of OX-modules if F(U) is an OX(U)-module and for V ⊂ U
the restriction map F(U)→ F(V) is O-linear.

A morphism F→ G of OX-modules consists of OU-linear maps F(U)→ G(U) such that,
for any V ⊂ U, the compositions F(U)→ F(V)→ G(V) and F(U)→ G(U)→ G(V) coincide.

We write Mod(OX) for the category of OX-modules and write HomX(F, G) for the set of
morphisms of sheaves of OX-modules from F to G. Notice that HomX(OX, F) = F(X) for any
sheaf F.

As the name suggests, Mod(OX) is an abelian category. However, one must be a little
careful when defining images, cokernels and the like.

Proposition 10.5. — The category Mod(OX) is abelian. If f : M → N is a morphism,
then ker f is the sheaf defined by ker f (U) = ker(M(U) → N(U)). However, the cokernel
coker f is defined to be the sheafification of the presheaf which assigns to U the module
coker(M(U)→ N(U)). Similarly with images.

Remark 10.6. — The problem is that coker, when defined naively might fail to be a sheaf.
However, a presheaf F can always be turned into a sheaf by a process called sheafification.

Remark 10.7. — Sheafification can be concisely defined as follows. Let ι : Sh → PSh
be the inclusion of sheaves inside of presheaves. There is a functor PSh → Sh called
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sheafification wich takes a presheaf F and sends it to the “associated sheaf” aF. The
associated sheaf is characterized by the following ‘adjunction’ property

Sh(aF, G) = PSh(F, ιG)(10.1)

for any presheaf F and sheaf G. Concretely, this means the following: there is a distinguished
map F→a F (called the unit of the adjunction) such that: for any map φ : F→ G, where G
is a sheaf, there exists a unique map aF→ G such that the composition F→a F→ G is φ.

To prove sheafification exists is a little messy. The actual construction is important, but
irrelevant for our purposes.

Remark 10.8. — We can’t talk about sheaves without mentioning the example which
presumably started it all: the exponential sequence. Suppose X is a complex manifold and
let OX be the sheaf of holomorphic functions. Write O×X ⊂ OX for the subsheaf consisting
of invertible holomorphic functions: O×X (U) = {f : U→ C | f (x) 6= 0,∀x ∈ U}. Write ZX for
the constant sheaf with stalk Z:

ZX(U) = {f : U→ Z | f is locally constant }

Since constant functions are holomorphic, we have an inclusion ZX ⊂ OX. Given f ∈ OX(U),
we can consider exp(f ) ∈ O×X (U). Thus we have a sequence

0→ ZX → OX → O×X → 0(10.2)

Now, for any U ⊂ X, ZX(U) → OX(U) is injective. On the other hand, OX(U) → O×X (U) is
typically not surjective: in general we cannot take log of an invertible function. However,
when U is simply connected, any function g : U → C× has a logarithm, i.e. a function
f : U → C such that g = exp(f ). So we see that, locally on X, the map OX → O×X is
surjective. We say that the sequence 10.2 is an exact sequence of sheaves (although it’s
typically not exact as a sequence of presheaves).

10.1.1. Hom and Tensor. — If U ⊂ X is open, we define the structure sheaf OU of U as
OU(V) = OX(V). If F is a sheaf on X we define F|U ∈ Mod(OU) as F|U(V) = F(V). Given F, G
we can also define the inner hom as the sheaf HomX(F, G) defined by

HomX(F, G)(U) = HomU(F|U, G|U).

Notice that HomX(OX, F) = F for any sheaf F.

The category Mod(OX) also has a tensor product. Indeed, given F, G ∈ Mod(OX) we can
define (F⊗X G)(U) as F(U)⊗OX(U) G(U). Unfortunately, this is not a sheaf in general, so it
must also be sheafified (however, when U is affine we don’t need to sheafifiy).

Notice that F⊗X OX = F.

The functors HomX and ⊗X are adjoints in the sense that the following holds for any
sheaves A, B, C

HomX(A⊗X B, C) = HomX(A, HomX(B, C)).(10.3)
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10.2. Sheaves and maps. — If f : X→ Y we can ‘push sheaves forward’ from X to Y. If
M ∈ Sh(X) is a sheaf (say of abelian groups), we define f∗M ∈ Sh(Y) as f∗(M)(U) = M(f –1(U)).

Consider X a topological space and FX the sheaf of (not necessarily continuous) functions
from X to C. In other words, FX(U) is functions U → C. A space with functions is a pair
(X,OX) where OX ⊂ FX is a subsheaf.

Remark 10.9. — If (X,OX) is a space with functions, then OX(U) is a reduced ring. Indeed,
if f : U→ C and f n = 0 then f = 0.

Digression 10.10. — The remark above is problematic if we want to deal with multiplicities.
Indeed, if P ⊂ A2 is a parabola and L ⊂ A2 is a line, the intersection L ∩ P generically
consists of two points. However, when L is tangent to P the naive intersection consists
of a single point. We saw in the introduction that we should view this as a ‘point with
multiplicity two’. The algebra tells us that the correct ring that comes up in this case is
R = C[x]/(x2), the ring of dual numbers. However, this ring cannot be modelled as a space
with functions. The problem is that topologically Spec R is a single point, but the ring of
functions R is two-dimensional. To deal with these more ‘exotic’ spaces one needs a theory
more general than spaces with functions, one needs what are called locally ringed spaces.

Definition 10.11. — A morphism f : X→ Y of spaces with functions is a continuous map
f such that for any g ∈ OY(U) the composition g ◦ f : f –1(U) → C belongs to OX(U). In
other words, f induces a map OY → f∗OX.

If M ∈ Mod(OX), the pushforward f∗F inherits the structure of a OY-module by using
OY → f∗OX. Namely, we have defined a functor

f∗ : Mod(OX)→ Mod(OY)(10.4)

Going in the opposite direction, we can define the pullback

f ∗ : Mod(OY)→ Mod(OX).(10.5)

Its definition is algebraically cumbersome so we will content ourselves for now with the
following characterization: f ∗ is the left adjoint of f∗. This means that for any M,N we
have

HomX(f
∗M,N) = HomY(M, f∗N)(10.6)

(although this property uniquely determines f ∗, it is admittedly a little abstract).

The functor f∗ is additive and left exact. While f ∗ is additive and right exact.
Moreover, f ∗OY = OX and f ∗(M⊗Y N) = f ∗M⊗X f ∗N.

11. Affine varieties

The rings we will be considering here are of finite type over C. Concretely, A is such
a ring if it can be presented as A ' C[x1, . . . , xn]/(f1, . . . , fr ). Of course, any A will admit
infinitely many different presentations. We will also assume A to be reduced, which means it
has no nilpotents.
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Given A, with a presentation A = C[x1, . . . , xn]/(f1, . . . , fr ), we write SpecA for the subset
of Cn given by the common zero locus of f1, · · · , fr . We write An for SpecC[x1, · · · , xn].

If S ⊂ A is any subset, we write V(S) ⊂ SpecA for the locus p ∈ SpecA such that
f (s) = 0 for all f ∈ S.

We define the Zariski topology on SpecA by declaring Z ⊂ SpecA to be Zariski-closed
if Z = V(S) for some S ⊂ A.

If f ∈ A, we write D(f ) = SpecA \ V(f ). It’s a good exercise to check that the D(f ) form
a basis for the Zariski-open subsets. Moreover, any subset W ⊂ SpecA is quasi-compact
(in the sense that it’s compact but not necessarily Hausdorff).

Let X = SpecA. We can turn X into a space with functions as follows. We declare
OX(D(f )) = Af . Since any open subset U ⊂ X is a union of D(f ), the value OX(U) is uniquely
determined by forcing OX to be a sheaf.

Remark 11.1. — Pick a presentation A = C[x1, . . . , xn]/(f1, . . . , fr ). Since quotienting and
localizing commute, Af can be identified with polynomials g/f n where g ∈ C[x1, . . . , xn]
and g ∼ g ′ if they agree mod (f1, . . . , fr ). This is why OX is a subsheaf of the sheaf of
functions FX.

Digression 11.2. — More intrinsically, if A is a reduced C-algebra, we could define SpecA
to be the set of maximal ideals of A. Let p < A be a maximal ideal, then A/p is a field.
Since A is a C-algebra, C→ A→ A/p is a field extension. Since A is of finite type over C,
a version of the Nullstellensatz says C→ A/p is a finite extension. Since C is algebraically
closed, C→ A/p is an isomorphism: A/p = C. If f ∈ A, we write f (p) for the value of f in
A/p (and we say “f evaluated at p”).

Write X = SpecA. Using the construction above, we can view A as a subset of the set of
functions X→ C.

If S ⊂ A, we write V(S) ⊂ X to be the set of maximal ideals containing S. These are the
closed subsets of the Zariski topology on X.

Dually, we write D(f ) ⊂ X for the maximal ideals p such that f (p) 6= 0. These subsets
form a basis for the opens of the Zariski topology. We turn X into a space with functions
by declaring OX(D(f )) = Af .

Definition 11.3. — We say a space with functions X is an affine variety if it’s isomorphic
(as a space with functions) to SpecA for some C-algebra A.

If A → B is a C-algebra homomorphism, we have an induced map Spec B → SpecA.
Indeed, pick presentations

C[x1, . . . , xn]
(f1, . . . , fr )

= A −→ B =
C[y1, . . . , ym]
(g1, . . . , gs )

.

Such a homomorphism is determined by the image of the xi . In other words, one needs to
choose n polynomials F1(y), . . . , Fn(y) such that fi (F1(y), . . . , Fn(y)) = 0 mod (g1, . . . , gs ), for all
i.

Dually, the induced map Spec B→ SpecA will send the point (a1, . . . , am) to (F1(a), . . . , Fn(a)).
More formally, we have just defined a contravariant functor from AlgredC from the category
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of reduced C-algebras to the category Sp of spaces with functions. The following is perhaps
the first result one sees in a first course in algebraic geometry (in some form or other).

Theorem 11.4. — The functor we just defined is fully faithful.

11.1. Quasicoherent sheaves on affines. — Let X = SpecA be an affine variety. If
M ∈ Mod(A) we can define M̃ ∈ Mod(OX) by declaring M̃(D(f )) = Mf . If F ∈ Mod(OX), we

say F is quasi-coherent if F = M̃ for some M ∈ Mod(A). We say F is coherent if F = M̃ with M
finitely generated. We write Coh(X) ⊂ QCoh(X) ⊂ Mod(OX) for these subcategories.

Proposition 11.5. — The functor Mod(A)→ QCoh(X) sending M to M̃ is fully faithful and

exact. Moreover, ˜(M⊗A N) = M̃⊗X Ñ and ˜HomA(M, N) = HomX(M̃, Ñ).

Suppose f : X → Y is a morphism of spaces with functions and X = SpecA and
Y = Spec B. It can be shown that f∗(QCoh(X)) ⊂ QCoh(Y) and f ∗(QCoh(Y)) ⊂ QCoh(X). Even
better, f ∗(Coh(Y)) ⊂ Coh(Y).

By fully faithfulness, we know f must come from a C-algebra map φ : B → A. It can
also be shown that

f ∗M̃ = ˜(M⊗B A).

Its right adjoint f∗ is instead the forgetful functor, which takes an A-module N and views
it as a B-module.

11.2. Locally free sheaves. — We say a sheaf F ∈ Mod(OX) is locally free if there is an
open cover Ui and isomorphisms F|Ui ' O⊕niUi

for some ni . It’s easy to show that the
number ni is locally constant on X.

For example, take (X,OX) a smooth manifold and E→ X a smooth vector bundle: this
will give rise to a locally free sheaf. Indeed, vector bundles are locally trivial, so there
is open cover Ui of X such that E|Ui ' Ui × Rni . But the sheaf of sections of the vector
bundle Ui × Rni → Ui is nothing but O⊕niUi

.
The correspondence actually goes both ways. If F is locally free on X, and Ui , Uj

are (connected) trivializing opens, one has isomorphisms O⊕nUij
→ F|Uij → O⊕nUij

. But an

isomorphism O⊕nUij
→ OUij is an invertible matrix with coefficients in OUij . In other words,

we have defined smooth transition functions gij : Uij → GLn(C)
For this reason, locally free sheaves are sometimes just called vector bundles. We write

Vect(X) ⊂ Coh(X) for the subcategory of (finitely generated) locally free sheaves.

11.2.1. The affine case. — Suppose X = SpecA is affine and M is a coherent sheaf (i.e. it’s a
finitely generated A-module). Then M is locally free if there is an open cover D(f1), . . . , D(fn)
with fi ∈ A such that Mfi ' A⊕nifi

.

Proposition 11.6. — A finitely generated module M is locally free if and only if it is
projective as an A-module.

Once again we see that projective modules are the same as vector bundles.
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11.3. Digression: local systems. — Let k be a field and let kX denote the constant sheaf
on X. Recall, kX(U) is the set of locally constant functions f : U→ k. A sheaf F ∈ Mod(kX)
is a local system (aka a locally constant sheaf) if it is a locally free kX-module. The reason we
have two different notions is the following.

Suppose X is a smooth manifold, there are two different sheaves of rings we’d like to
consider: RX (the constant sheaf) and C∞X (the sheaf of smooth functions). If V is a vector
space, we can view it as a constant sheaf V⊗RRX. We can also consider V⊗RRX⊗RX C∞X ,
which is the sheaf of sections of the trivial vector bundle V× X→ X.

More generally, suppose L is a local system for RX. So, locally, L|U = V ⊗R RU for
some vector space V. Then E = L⊗R C∞X is a vector bundle on X. But it’s more, it has a
preferred subspace of sections. I.e., if U ⊂ X, then L(U) ⊂ E(U).

We say a vector bundle E is a flat vector bundle if there is a local system L such that
L⊗RX C∞X = E.

One can check that this is the same as endowing E with a flat connection (which is the
same as giving E a D-module structure).

As far as I can tell, this is unrelated to the notion of flat sheaf (or flat module).

12. Varieties

Let (X,OX) be a space with functions. if U ⊂ X is open, we define OU = OX|U. Obviously,
(U,OU) is also a space with functions. We say (X,OX) is a variety if there exists an open
cover Ui , and (reduced, finite type) algebras Ai such that (Ui ,OUi ) is isomorphic to SpecAi ,
as spaces with functions.

12.1. Projective varieties. — The standard example of non-affine variety is PN. Indeed,
we have Ui = {[x0, . . . , xN] ∈ PN | xi 6= 0} is isomorphic to AN.

Let f be a homogeneous polynomial. For p ∈ PN, while the value f (p) is not always
well defined, it is well defined whether f (p) = 0 or f (p) 6= 0. Let S ⊂ C[x0, . . . , xN] be any
collection of homogeneous polynomials. We define V+(S) ⊂ PN to be the set of all p ∈ PN

such that f (p) = 0 for all f ∈ S. We define Z ⊂ PN to be Zariski-closed if Z = V+(S) for
some S.

Using all this, we can endow PN with the structure of a space with functions by gluing.

Exercise 12.1. — Using this definition, show that O(PN) = C.

Finally, we define a variety X to be quasi-projective if it’s the intersection X = U∩ Z ⊂ PN

of U ⊂ PN open and Z ⊂ PN closed.

12.2. Back to sheaves (of course). — Since X is a variety, we can define inside Mod(OX)
the subcategory QCoh(X) ⊂ Mod(OX) of quasi-coherent modules. We already defined quasi-
coherent modules in the affine case, so here it’s just a matter of gluing. We say F ∈ Mod(OX)
is quasi-coherent if, for an affine open cover Ui of X, F|Ui = M̃i for some quasi-coherent
M̃i . We say F is coherent if the Mi can be taken to be finitely generated.



MATH 566 - SPRING 2017 49

All three categories Coh(X) ⊂ QCoh(X) ⊂ Mod(OX) are abelian and the inclusions
are exact and closed kernels, cokernels and extensions. Moreover, all categories are
closed under ⊗X and HomX.

If f : X→ Y is a regular map, then f ∗ will send QCoh(Y) to QCoh(X) and also Coh(Y) to
Coh(Y). On the other hand, f∗ will send QCoh(X) to QCoh(Y) but typically Coh(X) will not
be sent to Coh(Y). The latter happens when f is proper, which means that the fibres of f are
compact in an appropriate sense (note: any map between projective varieties is proper).

For example, consider X = A1 and f : X→ pt, the only map to a point. This corresponds
to the inclusion C→ C[x]. If M is a C[x]-module, f∗M simply views it as a C-vector space.
For example, OX = C[x] is infinite-dimensional as a C-vector space, hence does not belong
to Coh(pt).

12.3. Closed immersion. — Let f : Y→ X be any map. By the adjunction property, for
any sheaf M on X and N on Y we have two natural maps

M→ f∗f ∗M

f ∗f∗N→ N

called the unit and counit of the adjunction. If X = SpecA, Y = Spec B and f comes from
A→ B we have

M→ M⊗A B

m 7→ m⊗ 1

and

N⊗A B→ N

n⊗ b 7→ nb

which is the action of B on N given by the B-module structure of N.
We must mention an important special case. Suppose A � B is surjective, in other

words B = A/I for some ideal I < A. Then M⊗A B = M/IM so that the counit M→ M⊗A B
is surjective. In general, suppose i : X ↪→ Y is a closed subvariety, then M → i∗i∗M is
always a surjective map of sheaves.

If i : X ↪→ Y is a closed immersion (aka a closed embedding aka the inclusion of a closed
subvariety), it is common practice to denote by OX the sheaf i∗OX on Y. Since OX = i∗OY,
we have a surjection OY � OX. Its kernel is denoted by IX and is called the ideal sheaf of
X in Y.

Once again, in the affine case this is something we understand very well. The inclusion
i : X ↪→ Y becomes the surjection A � B = A/I. The map OY � OX is A � A/I and IX is
really the ideal I.

12.3.1. Points. — When x ∈ X is a point, it is common to write k(x) for its structure sheaf,
when viewed as a sheaf on X. This is a special case of what we just discussed: if i : pt→ X
is the inclusion of x, then k(x) = i∗Opt.
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Proposition 12.2 (Nakayama). — Let M ∈ Coh(X). Then M = 0 if and only if M⊗k(x) = 0
for all x ∈ X.

Proof. — One direction is obvious. Suppose M⊗ k(x) = 0 for all x ∈ X. First, we notice
that M = 0 if and only if there exists an open cover Ui of X and M|Ui = 0 for all i. Thus
we can reduce to the case X = SpecA is affine. It is a standard fact that a module M = 0 if
and only if the localization Mm = M⊗A Am is zero for all maximal ideals m. By Nakayama,
Mm = 0 if and only if Mm/mMm = 0. Since localization and quotients commute, Mm = 0 if
and only if (M/mM)m = 0. Since M/mM ↪→ (M/mM)m is injective, we conclude that M = 0
if and only if M/mM = 0 for all maximal ideals m.

Notice that, if a point x corresponds to the maximal ideal m, then the sheaf k(x) is A/m.
Moreover, M/mM = M⊗A k(x).

The support of M ∈ Coh(X) is the set suppM of x ∈ X such that M⊗ k(x) 6= 0. This is a
closed subset of X.

Digression 12.3. — The support can also be characterized as follows. Consider the map
OX → EndX(M) taking a to the endomorphism ·a (multiplication by a, i.e. it’s a scalar
matrix). Its kernel Ann(M) ⊂ OX is called the annihilator of M. The quotient OX/Ann(M)
defines the scheme-theoretic support of M. The variety (i.e. reduced scheme) corresponding
to it is the suppM.

13. Derived functors in algebraic geometry

We have functors (f ∗, f∗,⊗, Hom) and we can derive them. Assume X is a variety. Recall
E ∈ Db(Mod(OX)) if and only if Hi (E) = 0 for i � 0 and i � 0. The following can also be
shown to be true.

Proposition 13.1. — Let E ∈ Db(ModOX). Then, E ∈ Db(QCoh(X)) if and only if Hi (E) ∈
QCoh(X) for all i. Similarly, E ∈ D(X) if and only if Hi (E) ∈ Coh(X) for all i.

13.1. Pushforward. —

Proposition 13.2. — Let X be a variety. The category QCoh(X) has enough injectives.

This means for f : X→ Y we have a well defined derived pushforward Rf∗ : D+(QCoh(X))→
D+(QCoh(Y)).

Proposition 13.3. — For any map f : X→ Y between varieties and any sheaf F ∈ QCoh(X),
we have Rif∗F = 0 for i > dimX.

Here Rif∗F = Hi (Rf∗F) ∈ QCoh(Y). In particular, we have a well-defined functor

Rf∗ : Db(QCoh(X))→ Db(QCoh(Y)).(13.1)

When f is moreover proper, we have

Rf∗ : Db(Coh(X))→ Db(Coh(Y)).(13.2)
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13.2. Global sections. — Classically, if F is a sheaf on X, one writes Γ(X, F) for the group
of global sections F(X). We write pt for a point and γ : X → pt for the only map to it.
Notice that Γ(X, F) = γ∗F.

When X = SpecA is affine, recall that any quasi-coherent sheaf F ∈ QCoh(X) is identified
with the A-module F(X) = Γ(X, F).

Consider now f : Y → X where X = SpecA is affine. For F ∈ QCoh(Y), we have
f∗F ∈ QCoh(X). By the identification above, f∗F is identified with Γ(X, f∗F) ∈ Mod(A).
However, Γ(X, f∗F) = Γ(Y, F). Hence, f∗ = Γ(Y, –) where we keep track of the A-module
structure.

More formally, let γX : X → pt and γY : Y → pt be the only possible maps. Recall,
Γ(X, –) = γX,∗ and similarly for Y. Since γY = γX ◦ f we have Γ(Y, –) = Γ(X, –) ◦ f∗.

13.3. Sheaf cohomology. — We write

Hi (X, F) = Hi (Rγ∗F) ∈ QCoh(pt) = Mod(C).(13.3)

Theorem 13.4 (Serre). — Let X be a variety. Then X is affine if and only if Hi (X, F) = 0
for all i > 0 and all F ∈ QCoh(X).

This has the following consequence. Let f : Y → X with X = SpecA affine. Then
Rf∗F = H∗(Y, F) where we keep track of the A-module structure.

13.4. Interlude: singular cohomology. — Consider now the case of X a random topo-
logical space. Let A be a ring and let M ∈ Mod(A). We define Ck (X,M) to be the free
A-module spanned by continuous maps ∆k → X where ∆k is the standard k-simplex. The
boundary maps ∂ : Ck → Ck–1 turn it into a chain complex. Moreover, Hi (C∗(X,M)) is (by
definition) the singular homology of X with coefficients in M.

We write Ck (X,M) = HomA(Ck (X,M), A) for the dual A-module. Recall that Hi (C∗(X,M))
is (by definition) the singular cohomology of X with coefficients in M. Recall also that, given
any continuous map f : Y→ X, we can precompose to obtain a map Ck (X,M)→ Ck (X,M).
Moreover, this turns out to be a chain map, thus inducing pullback morphisms Hk (X,M)→
Hk (Y,M).

13.4.1. Sheaf of cochains. — Write AX for the constant sheaf of rings on X with stalk A. This
means, AX(U) = {f : U → A | f is locally constant}. Similarly, define MX for the constant
A-module with stalk M.

On X we can define a sheaf Ck (–,M) by attaching to each U ⊂ X the module Ck (U,M).
Restriction maps V ⊂ U are defined using pullbacks as above. We thus have a chain
complex of sheaves

· · · → 0→ AX → C0(–,M)→ C1(–,M)→ · · ·(13.4)

in other words, an element of Ch+(Mod(AX)).
Assume now X is a topological manifold. This means that X locally looks like Rn. Since

contractible spaces have no singular cohomology, this means the sequence 13.4 is an exact
sequence of sheaves. In particular, the complex

E = · · · → 0→ C0(–,M)→ C1(–,M)→ · · ·
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is quasi-isomorphic to AX. Consider the functor γ∗ of global sections. We therefore have
Rγ∗(AX) = Rγ∗E.

It turns out that the sheaves Ck (–,M) are γ∗-injective (they are examples of flabby
sheaves). Hence,

Hi (X,M) : = Hi (Rγ∗MX) = Hi (F)(13.5)

where F is the complex obtained by applying global sections (i.e. Γ or γ∗) to C∗(–,M), in
other words

F = · · · 0→ C0(X,M)→ C1(X,M)→ · · ·(13.6)

In summary, for X a manifold, sheaf cohomology with coefficients in the sheaf MX is the
same as ordinary singular cohomology with coefficients in M.

13.4.2. de Rham. — Let X now be a smooth manifold. Write OX for the sheaf of smooth
functions on X. The tangent bundle TX is a smooth vector bundle on X. The corresponding
sheaf is denoted by TX. Dually, the cotangent bundle T∗X corresponds to the sheaf
T∗X = HomX(TX,OX). By taking wedges (exterior powers) we obtain the sheaves of p-forms,

A
p
X. Note A0

X = OX. We have a chain complex of vector bundles (the de Rham complex)

0→ RX → A0
X → A1

X → · · ·(13.7)

where RX is the constant sheaf on X with stalk R. The Poincaré lemma says that this
complex is exact (because locally ever closed form is exact). In other words, the complex

dRX = A0
X → A1

X → · · ·(13.8)

is quasi-isomorphic to the constant sheaf RX. Moreover, it can be shown that the A
p
X are

γ∗-acyclic (this is due to the existence of partitions of unity). Consider the complex of
R-vector spaces given by global forms

A•(X) = · · · → 0→ A0(X)→ A1(X)→ A2(X)→ · · ·(13.9)

We call its cohomology Hi (A•(X)) = HidR(X) the de Rham cohomology of X. It follows
by acyclicity of A• that Hi (X,RX) = HidR(X). But we saw earlier that Hi (X,RX) is also
isomorphic to the i-th singular cohomology of X with coefficients in R.

13.5. Pullback. — To derive ⊗ and f ∗ we need to resolve by appropriately flat objects. A
module M ∈ Mod(OX) is flat if for any short exact sequence 0→ N′ → N→ N′′ → 0 the
sequence 0→ M⊗ N′ → M⊗ N→ M⊗ N′′ → 0 is exact. Notice that locally free sheaves
are flat.

A map f : X→ Y of spaces with functions is flat f ∗ is exact (equivalently, f∗OX is flat as
an OY-module).

Proposition 13.5. — The category Mod(OX) has enough flat sheaves.

In particular, we have derived versions of
L
⊗X and Lf ∗ : D–(ModOY) → D–(ModOX) for

any f : Y→ X.
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13.6. Coherent sheaves (again, really? totally unexpected). — For smooth varieties,
all our functors never leave the bounded world.

Proposition 13.6. — Let X be a smooth quasi-projective variety. Any coherent sheaf F
admits a resolution

0→ En → En1 → · · · → E0 → F→ 0

with Ei a vector bundle (i.e. locally free).

Corollary 13.7. — For X quasi-projective, the category Vect(X) is projective for ⊗X and
f ∗, for any f : Y→ X. This means that both these functors are left derivable. Moreover,
since we can pick our resolution to be bounded we have the following well defined functors.

L
⊗ : Db(CohX)× Db(CohX)→ Db(CohX)

(E, F) 7→ E
L
⊗ F

f ∗ : Db(CohX)× Db(CohX)→ Db(CohY)

E 7→ Lf ∗(E)

13.7. Flat and Affine. — Flat maps are nice because f ∗ needn’t be derived. In the other
direction, if f is affine then f∗ needn’t be derived (a map is affine essentially if the fibres
are affine varieties). Any map between affine varieties is affine. A closed immersion Y ↪→ X
is affine (indeed, locally on X the map looks like Spec of A � A/I).

13.8. Everything is derived. — From now on, we will pretty much only deal with X a
smooth projective variety. We will write D(X) for Db(Coh(X)). Moreover, all functors will be
implicitly derived. For example, f∗ will denote Rf∗. When we want to refer to the underived
functor, we will simply take cohomology: H0(f∗F). The only tricky part of this convention
is that Hom will denote Homs in the derived category (which is a vector space), while
Hom• will denote RHom•, which is a chain complex of vector spaces. With this convention,
H0(Hom•(E, F)) = Hom(E, F). On the other hand, for sheaf hom we simply write Hom in
place of RHom• since it creates no confusion.

13.8.1. Tor. — For example, if M ∈ Coh(X) and x ∈ X the symbol M⊗ k(x) will denote the
derived tensor product. To denote the ordinary one, we write Tor0(M, k(x)).

Proposition 13.8. — Suppose E ∈ D(X). Then E = 0 if and only if E ⊗ k(x) = 0 for all
x ∈ X.

Proof. — Suppose E 6= 0. Since E is bounded on the right there is a maximum number q
such that Hq (E) 6= 0. We have a triangle

τ≤q–1E→ E→ Hq (E)[–q]
+→

Remark 13.9. — If F ∈ D≤k (X), N ∈ Coh(X) then F⊗ N ∈ D≤k (X). This follows from how
we explicitly derive functors by taking resolutions.
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By tensoring with k(x) we get a triangle

τ≤q–1E⊗ k(x)→ E⊗ k(x)→ Hq (E)[–q]⊗ k(x) +→

Since we are assuming E⊗ k(x) = 0, we deduce that τ≤q–1E⊗ k(x) = Hq (E)[–q]⊗ k(x)[–1] =
Hq (E)⊗ k(x)[–q – 1]. But Hq+1(τ≤q–1E⊗ k(x)) = 0 so H0(Hq (E)⊗ k(x)) = Tor0(Hq (E), k(x)) = 0.
Hence, by Nakayama, Hq (E) = 0. Which is absurd.

Definition 13.10. — We call supp E the set x such that E⊗ k(x) 6= 0. This is the same as
the union of suppHi (E) for all i. It’s a closed subset of X.

E = 0 if and only if supp E = 0.

13.9. Ext. — More often than not, we will be dealing with X smooth and projective. In
this case, HomX(E, F) is a finite-dimensional vector space. Moreover, if E, F ∈ Coh(X) are
sheaves, then ExtiX(E, F) = 0 for n < i < 0. We will also see later Serre duality, which says
there is an isomorphism

Exti (E, F)∨ = Extn–i (F, E⊗ ωX).(13.10)

Recall that Exti (E, F) = Hom(E, F[i]) = Hom(E[–i], F).

Proposition 13.11. — Let C be a smooth and projective curve. Let E ∈ D(X). Then
E ∼=

⊕
i H

i (E)[–i], non-canonically.

Proof. — Pick a representative of E in Chb(Coh(X)) and induct on its length. For example,
if E = E–1 → E0 then we have an exact triangle H–1(E)[1] → E → H0(E) → H–1(E)[2].
But since C is a curve, Ext2(H0(E), H–1(E)) = 0, thus the sequence above splits and E =
H–1(E)[1]⊕ H0(E).

13.10. Duals. — Let V be a vector space over C. The dual V∨ is defined as V∨ =
HomC(V,C). When V is finite dimensional, we have (V∨)∨ = V. If V and W are two vector
spaces, with V finite dimensional, then HomC(V,W) = V∨ ⊗C W.

These identities can be generalized to sheaves. If E, F ∈ D(X), recall we have HomX(E, F) ∈
D(X). When E is a complex of vector bundles, we don’t need to resolve E to com-
pute Hom (unlike the case of Hom•). For E ∈ D(X), we define the (derived) dual to
be E∨ = HomX(E,OX). We have E∨∨ = E

Remark 13.12. — Notice that for E ∈ D(QCoh(X)), the double dual needn’t be isomorphic
to E. Here it’s crucial that Hi (E) ∈ Coh(X).

We have

HomX(E, F) = E∨ ⊗X F(13.11)

(E⊗ F)∨ = F∨ ⊗ E∨(13.12)

Hom(E, F)∨ = Hom(F, E).(13.13)

We also have a natural isomorphism

HomX(OX, E) = E.(13.14)
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We have an evaluation map

HomX(E, F)⊗ E→ F(13.15)

As a special case, we have the trace (or contraction) map

E∨ ⊗ E→ OX.(13.16)

13.11. Adjunction. — Tensor and Hom are adjoints

HomX(E⊗X F, G) ' HomX(E, HomX(F, G)).(13.17)

which follows (by taking global sections) from the sheaf version

HomX(E⊗X F, G) ' HomX(E, HomX(F, G)).(13.18)

13.12. Pullback. — Let f : X → Y be a map between smooth varieties. When E is a
complex of vector bundles, to compute f ∗E we don’t need to resolve (vector bundles are
f ∗-projective). Moreover, we always have

f ∗OY = OX(13.19)

f ∗(E⊗Y F) = f ∗E⊗X f
∗F(13.20)

f ∗HomY(E, F) = HomX(f
∗E, f ∗F)(13.21)

f ∗(E∨) = (f ∗E)∨(13.22)

Let’s go back to the trace map.

Proposition 13.13. — Trace E∨ ⊗ E → OX is an isomorphism if and only if E is (quasi-
isomorphic to) a line bundle.

Proof. — If E is a line bundle, then this is obvious.
Conversely, suppose U ⊂ X be an open subset. Let F be the restriction of E to U. Since

E∨ ⊗ E→ OX is an isomorphism in D(X), we have F∨ ⊗ F→ OU is an isomorphism in D(U).
Assume U = SpecA is affine. Resolve F by projective modules. Actually, by refining U if
necessary (or passing to local rings) we can write

F = · · · → Ani → Ani+1 → · · ·

The complex F∨ is given explicitly by dualizing that complex of free modules, in other
words (F∨)k = An–k . Similarly, an explicit model for (F∨ ⊗ F) has

(F∨ ⊗ F)k =
⊕
p+q=k

An–p ⊗ Anq

And since the whole complex must be homotopy equivalent to A we see that there is i such
that Ani = A and Anj = 0 for j 6= i.

In other words, we have learned that E|U = OU[k] for some k. Globally (if X is connected),
E = L[k] for some line bundle L.
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13.13. Pushforward. — Pushforward is right adjoint to pullback, even in the derived sense

HomX(f
∗E, F) = HomY(E, f∗F)(13.23)

which actually follows from a sheaf version of adjunction

f∗HomX(f
∗E, F) = HomY(E, f∗F)(13.24)

We also have the so-called projection formula

f∗(E⊗X f
∗F) = F⊗Y f∗E.(13.25)

Remark 13.14. — Suppose A→ B is a ring homomorphism. Let M be a B-module and N
an A-module. The projection formula says: consider M⊗B (B⊗A N) as an A-module, then
this is the same as N ⊗A M, where M is viewed as an A-module. Indeed, this follows by
‘associativity of tensor’: M⊗B (B⊗A N) = M⊗A N.

Remark 13.15. — If you look up the projection formula in Hartshorne, you’ll see he
assumes F to be a vector bundle. This is because in his formula the functors are not derived.
When F is a vector bundle, Hartshorne’s formula follows by taking H0 everywhere.

Let now f = γ : X→ pt, (or more generally any map to an affine). Then γ∗ = Γ(X, –) =
H•(X, –) is the same as (derived) global sections (aka sheaf cohomology).

γ∗(F) = Γ(X, F) = H•(X, F) = Hom•(OX, F)(13.26)

13.14. Serre duality. — Let L ∈ D(X). We have a functor µL : D(X)→ D(X) which takes E
and sends it to µL(E) = L⊗ E.

Let L∨ = HomX(L,OX) be the dual. Then µL∨µL(E) = L∨ ⊗ L⊗ E = E. In other words,
µL is an equivalence with inverse µL∨ .

Let ωX =
∧n ΩX, where n = dimX. Here ΩX can be seen either as the holomorphic

cotangent bundle of X or the sheaf of Kähler differentials on X. The sheaf ωX is called the
canonical bundle. Its class in Pic(X) (or Chow) is often denoted KX. We define

SX : D(X)→ D(X)(13.27)

E 7→ E⊗ ωX[n](13.28)

When X is proper, this functor has a very special property (namely, it satisfies Serre duality).

Theorem 13.16. — Let X be a smooth and proper. For any E, F ∈ D(X) we have functorial
isomorphisms (of finite dimensional vector spaces)

HomX(E, F)
∨ ' HomX(F, SX(F)).(13.29)

13.14.1. Classical Serre duality. — How does this compare to ordinary Serre duality? Recall
that Hom(OX, F[i]) = Hi (X, F). By Serre duality, Hom(O, F[i])∨ = Hom(F[i],O ⊗ ω[n]) =
Hom(F,ω[n – i]). Let γ : X→ pt. Recall that

Hom(F,ω[n – i]) = H0(γ∗Hom(F,ω[n – i]))

= H0(γ∗(F∨ ⊗ ω[n – i]))
= Hn–i (X, F∨ ⊗ ω).
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In other words,

Hi (X, F)∨ ' Hn–i (X, F∨ ⊗ ωX).(13.30)

13.14.2. Calabi-Yau. — We say a variety is Calabi-Yau (in a weak sense) if ωX ∼= OX is trivial.
This is the algebraic analogue for a manifold being orientable (on a smooth manifold, the
orientation sheaf plays the role of the canonical bundle). For Calabi-Yaus, Serre duality
takes a particularly nice form

Exti (E, F)∨ ' Extn–i (F, E).(13.31)

13.15. Base change. — Consider a commutative square

W Y

X Z

p q

we say W is a fibre product essentially if

W = X×Z Y = {(x, y) ∈ X× Y | p(x) = q(y)}

More formally, we can characterize fibre products with a universal property. For any variety
V and maps V→ X, V→ Y such that the compositions V→ X→ Z, V→ Y→ Z agree
there exists a unique map V→ W making the diagram below commute.

V

W Y

X Z

p q

Remark 13.17. — If everything in sight is affine, we can view the first square as a map of
rings: X = SpecA, Y = Spec B, Z = SpecC,W = SpecD.

D B

A C

and one checks D = A⊗C B.

Digression 13.18. — Strictly speaking, Spec(A⊗C B) is the fibre product on the category
of schemes, not of varieties. To obtain a variety one would need (A ⊗C B)red, the tensor
product modulo all its nilpotent elements. We shall ignore this point.

Now, suppose M is a B-module. We can take M ⊗B D (pullback) and view it as an
A-module (pushforward). On the other hand, we can view M as a C-module (pushforward)
and then take M⊗C A. However,

M⊗B D = M⊗B (B⊗C A) = M⊗C A

hence the two agree.
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Proposition 13.19 (base change). — Suppose

W Y

X Z

g

p q

f

is a fibre square. Suppose f is flat (and therefore g is flat). Then p∗g∗ = f ∗q∗.

13.16. Kunneth. — Consider a product X× Y with projections p : X× Y→ X, q : X× Y.
We have a fibre square

X× Y

X Y

pt

p q

γX γY

Let F ∈ D(Y). By base change, p∗q∗F = γ∗XγY,∗ thus

p∗q∗F = RΓ(Y, F)⊗ OX.

More generally, if E ∈ D(X), F ∈ D(Y) then

RΓ(X× Y, p∗E⊗ q∗E) = RΓ(X, E)⊗C RΓ(Y, F)

This follows from the projection formula.

RΓ(X× Y, p∗E⊗ q∗E) = γX,∗p∗(p∗E⊗ q∗F)
= γX,∗(E⊗X p∗q

∗F)

= γX,∗(E⊗X RΓ(Y, F)⊗C OX)

= γX,∗(E⊗C RΓ(Y, F))

= RΓ(X, E)⊗C RΓ(Y, F)

13.17. Support again. —

Proposition 13.20. — Let E ∈ D(X). Suppose supp E is the disjoint union of two closed
subsets Z1 q Z2. Then E = E1 ⊕ E2 where supp Ei ⊂ Zi .

Proof. — Consider the open cover of X given by Ui = X \ Zi . Let ji : Ui → X be the
inclusion and let j : U1 ∩ U2 → X also denote the inclusion. Although we haven’t proved
this, it is a general fact that (in D(QCoh(X))) we have a Mayer-Vietoris triangle

E→ j1,∗j
∗
1 E⊕ j2∗j

∗
2E→ j∗j∗E

+→
Since supp E ⊂ Z1 ∩ Z2 we have j∗E = 0, therefore the claim follows.

This leads to a mildly interesting result.

Definition 13.21. — Let T be a triangulated category and let A, B ⊂ T be two (non-zero)
triangulated subcategories. We say A, B are a completely orthogonal decomposition of T if
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Hom(B, A) = 0
Hom(A, B) = 0
For any E ∈ T there is an exact triangle A→ E→ B→ with A ∈ A, B ∈ B.

Since Hom(B, A) = 0 it follows that Hom(B, A[1]) = 0. Hence the triangle above splits and
E is actually always a direct sum E = A′ ⊕ B′ with A′ ∈ A, B′ ∈ B.

Proposition 13.22. — D(X) has admits a completely orthogonal decomposition if and only
if X is disconnected.

What will turn out to be more interesting are semi-orthogonal decompositions (which are
defined in the same way but with the first axiom omitted).

Proof. — If X = Z1 q Z2 is disconnected, then the Mayer-Vietoris triangle does the trick.
Suppose instead we have an orthogonal decomposition. Let OX = A ⊕ B be the decom-
position of the structure sheaf. Since Hi (A) ⊕ Hi (B) = Hi (OX), we see A, B ∈ Coh(X).
Since we have a surjection A ⊕ B → A (i.e. projecting onto a factor), A = OZ1 , B = OZ2
must be structure sheaves of two closed subschemes. This implies X is disconnected.
Indeed, assume there were x ∈ Z1 ∩ Z2. Then Hom(OZ1 , k(x)) = C = Hom(OZ2 , k(x)). But
C = Hom(OX, k(x)) = Hom(OZ1 , k(x))⊕ Hom(OZ2 , k(x)) = C2.

13.18. Tensoring with vector spaces. — One thing we probably used implicitly is tensor-
ing with vector spaces. If E ∈ Mod(OX) and V ∈ Mod(C) it makes to consider V⊗C E. If we
pick a basis V ' Cn then V⊗C E = E⊕n.

Digression 13.23. — More formally, this is what’s happening. A vector space V can be
turned into a sheaf VX by declaring VX(U) to be the set of locally constant functions
f : U→ V. This is obviously a CX-module. On the other hand, CX is obviously a subsheaf
of rings of OX (constant functions are regular).

Thus, if E is an OX-module, V⊗C E means VX⊗CX E where we view E as a CX-module.

This tensoring procedure obviously makes sense for complexes. Since it is exact, its
derived version coincides with the underived one.

13.19. Grothendieck-Verdier duality. — Given f : X → Y we’ve seen f∗ and f ∗. Turns
out there is a third functor f ! (“f upper shriek”). We will only deal with f ! when f is proper
(and X and Y are smooth). We have f ! : D(Y)→ D(X)

f !(E) = f ∗(E)⊗ ωY ⊗ f ∗ω–1X [dimY – dimX].

We have that f ! satisfies the following “sheafified adjunction”

HomY(f∗E, F) = f∗HomX(E, f
!F)
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Here’s another list of things which are true

HomY(f∗E, F) = HomX(E, f
!F)(13.32)

f ! = DX ◦ f ∗ ◦ D–1
Y(13.33)

f ! = SX ◦ f ∗ ◦ S–1Y(13.34)

f∗ ◦ DX = DY ◦ f∗(13.35)

where DX(E) = HomX(E,ωX[dimX]) is the dualizing functor and where SX(E) = E⊗ωX[dimX]
is the Serre functor.

13.19.1. Serre duality follows from Grothendieck-Verdier duality. — Let γ : X → pt. Then
ωX[dimX] = γ!C is called the dualizing complex.

Digression 13.24. — If X is proper, but not necessarily smooth, γ! still exists and is still an
adjoint of f∗. The complex γ!C still makes sense, but it might be a genuine complex. One
can prove that X is Gorenstein if and only if γ!C is (the shift of) a line bundle. Similarly, X
is Cohen-Macaulay if and only if γ!C is (the shift of) a sheaf.

Consider γ : X→ pt. Then we want to compare Hom(E, F) with Hom(F, E⊗ ωX[dimX]).
We know

Hom(E, F)∨ = (γ∗Hom(E, F))∨

= (γ∗E∨ ⊗ F)∨

= Dpt ◦ γ∗(E∨ ⊗ F)

= γ∗ ◦ DX(E
∨ ⊗ F)

= γ∗Hom(E∨ ⊗ F,ωX[dimX])

= Hom(E∨ ⊗ F,ωX[dimX])

= Hom(F, Hom(E∨,ωX[dimX]))

= Hom(F, E⊗ ωX[dimX]).

Digression 13.25. — When f is ètale, f ! is actually just the same as f ∗. To define f for an
arbitrary morphism, we use the fact that any map between quasi-projective varieties factors
as f = pj with p proper and j an open immersion (for general schemes one needs to use
Nagata compactification). Making sure everything is well defined is hard (and explained in
Hartshorne’s book Residues and Duality).

Digression 13.26. — In topology we also have a sixth functor f! “f lower shriek”. The gang
(f ∗, f∗, f !, f!,⊗, Hom) is called the formalism of six functors.

When f is proper, f! = f∗. Sadly, algebraic geometry lacks this functor when f is non
proper.

Actually, this is not quite correct (and it’s actually part of a bigger story called Tate
geometry which is getting attention recently). Let’s go back to everything underived. If is
proper, we know f∗ : Coh(X) → Coh(Y). In this case, we would want f! = f∗. In general,
however, f∗ : Coh(X)→ QCoh(Y).
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In the appendix to Residues and Duality, Deligne actually constructs a functor f! : Coh(X)→
ProCoh(Y), where the latter is the pro-completion of the category of coherent sheaves. This
essentially means formally adding all filtered limits to Coh(Y). As far as I can tell, this
category has received very little attention.

To understand this slightly better, we should mention the following fact. Dual to Pro,
there is the ind-completion IndCoh(Y), which is the category obtained by formally adding
all filtered colimits. It turns out (it’s actually not hard to show) that IndCoh(Y) = QCoh(Y).
So, in a certain sense, the correct codomain for f∗ is IndCoh(Y). But the latter just happens
to be the very reasonable category QCoh(Y).

13.19.2. A special case. —

Corollary 13.27. — Suppose i : Y → X is the embedding of a smooth subvariety of
codimension c. Then

(i∗OY)
∨ = i∗ωY ⊗ ω∨X [–c]

Proof. — By the Yoneda lemma, it suffices to prove that for any G ∈ D(X) we have functorial
isomorphisms

Hom(G, (i∗OY)
∨) = Hom(G, i∗ωY ⊗ ω∨X [–c])

So,

Hom(G, (i∗OY)
∨) = Hom(G,Hom(i∗OY,OX))

= Hom(G⊗ i∗OY,OX)

= Hom(i∗(i∗G⊗ OY),OX)

= Hom(i∗i∗G,OX)

= Hom(i∗G, i!OX)

= Hom(G, i∗i∗!OX)

and

i∗i!OX = i∗((i∗ω∨X [– dimX])⊗ ωY[dimY])

= ω∨X ⊗ i∗ωY[–c].

Why is this interesting? Well, consider the case Y = pt ⊂ X is a point. Then i∗Y = k(x)
for some x. If we take the underived sheaf hom, Ext0(k(x),OX) we get nothing. Indeed, if
I is a maximal ideal of a domain R, then HomR(R/I, R) = 0 because 1 has no torsion. So
locally Ext0(k(x),OX) is zero and therefore globally. However, once we take derived sheaf
Hom, we get an interesting complex.
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13.19.3. A very special case. — Let’s see a special case. Assume Y = D ⊂ X is a divisor,
i.e. it’s of codimension c = 1. Since X is smooth, this is equivalent to its ideal sheaf ID
being a line bundle (i.e. D is locally cut out by one equation). In this case, we often write
ID = OX(–D). Summarizing, we have a short exact sequence

0→ OX(–D)→ OX → OD → 0

where we used our shorthand OD = i∗OD. We write OX(D) for the dual line bundle OX(–D)∨.
We also write F(D) = F⊗ O(D).

Theorem 13.28 (Adjunction formula). — We have ωD = i∗(ωX ⊗ O(D)).

Corollary 13.29. — (i∗OD)∨ = i∗OD(D)[–1].

13.19.4. A less very special case. — Consider Y ⊂ X of codimension c > 1 and let IY be its
ideal sheaf. Then

Hk (I∨Y ) =


OY k = 0

i∗ωY ⊗ ω∨Y k = c – 1

0 otherwise

Indeed, we have a short exact sequence

0→ IY → OX → i∗OY → 0

Applying (–)∨ we get an exact triangle

O∨Y → OX → I∨Y →
and we simply stare at the long exact sequence in cohomology to obtain the result.

Proposition 13.30. — supp E∨ = suppE

Proof. — Assume E⊗ k(x) = 0. Then (E⊗ k(x))∨ = 0 We have

0 = (E⊗ k(x))∨ = E∨ ⊗ k(x)∨

= E∨ ⊗ i∗ωpt ⊗ ω∨X [– dimX]

= E∨ ⊗ i∗C⊗ ω∨X [– dimX]

= E∨ ⊗ k(x)[– dimX]

hence E∨ ⊗ k(x) = 0. Since E∨∨ = E, the result follows.

Excellent, now we have the tools to tackle Chapter 4 in Huybrechts’s book.

14. Chapter 4: canonical

When we do not specify, all varieties are smooth and projective over C. We say X, Y are
derived equivalent if D(X) = D(Y) as C-linear triangulated categories.

Remark 14.1. — Let f : X→ Y be an isomorphism of varieties. Then (underived) pullback
f ∗ : Coh(Y) → Coh(X) is an equivalence. This is because, if g = f –1, g∗f ∗ = (fg )∗ = id∗ =
idCoh. Hence (derived) pullback f ∗ : D(Y)→ D(X) is an equivalence.
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Theorem 14.2. — Let Φ : D(X)→ D(Y) be an equivalence. Then Φ ◦ SX = SY ◦ Φ.

Proof. — By Yoneda, we reduce to proving that

Hom(E,ΦSX(F)) = Hom(E, SYΦ(F))

in a sufficiently functorial way. Let Ψ = Φ–1.

Hom(E, SYΦ(F)) = Hom(Φ(F), E)∨

= Hom(F,Ψ(E))∨

= Hom(S–1XΨ(E), F)

= Hom(E,ΦSX(F)).

Slogan: equivalences commute with Serre functors.

Remark 14.3. — The proof above has nothing to do with varieties: it’s about any triangu-
lated category with a Serre functor.

Corollary 14.4. — If X and Y are derived equivalent then dimX = dimY.

This is already an interesting result: dimension is a categorical invariant. You can’t have
a surface being derived equivalent to a fourfold.

Proof. — Let Φ : D(X)→ D(Y) be an equivalence. Then ΦSXk(p) = SYΦk(p). But ΦSXk(p) =
Φk(p)[dimX], while SYΦk(p) = (Φk(p))⊗ ωY[dimY]. Let E = Φk(p), we have

E⊗ ωY[dimY] = E⊗ [dimX]

and since (–)⊗ ωY does not shift degrees we must have dimX = dimY.

OK, in the proof above we used at least three things without mention: ω ⊗ k(p) = k(p) since
k(p) is a skyscraper; Φ(k(p)) 6= 0 since k(p) 6= 0 and Φ is an equivalence; since ⊗ωY is exact
it commutes with taking cohomology, i.e. Hk (F⊗ L) = Hk (F)⊗ L for any line bundle L.

Corollary 14.5. — Suppose X and Y are derived equivalent. Then the orders of ωX and
ωY are the same.

For example tells you that a K3 surface can’t be derived equivalent to P1 × C with C a
curve.

Proof. — Let d = dimX = dimY. Say ωkX = OX. Then

[kd ]Φ = Φ[kd ] = ΦSkX = SkYΦ = (–)⊗ ωkY[kd ]Φ

hence ωkY = OY. By symmetry (i.e. using Φ–1) we conclude.

Theorem 14.6 (Bondal–Orlov). — Suppose X has ample (or anti-ample) canonical bundle.
Suppose X and Y are derived equivalent. Then X and Y are isomorphic as varieties over C.
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Remark 14.7. — What’s a cheap way to cook up varieties with ample or anti-ample
canonical? Turns out it’s pretty easy. Consider X ⊂ PN+1 a hypersurface of degree d . By
adjunction, the canonical of X is ωX = O(–N – 2 + d ). Thus, for d > N + 2, ωX is ample, for
d < N + 2 it’s anti-ample, while for d = N + 2 ωX = OX is trivial (so Bondal-Orlov does not
apply).

This Bondal-Orlov theorem is a derived analogue of Gabriel’s theorem.

Theorem 14.8 (Gabriel). — Suppose Coh(X) is equivalent to Coh(Y), then X is isomorphic
to Y.

Proof. — One way to prove this is the following. [For this proof, we suspend our convention
that everything is derived] Skyscrapers can be characterized categorically. Indeed, let’s call
a sheaf F point-like if

– Hom(F, F) = C
– if F � G is a surjection, then either G = 0 or F = G.

Clearly skyscrapers are point-like. If F is point-like, then by the first condition F 6= 0 and
thus there is p ∈ supp F. Let p 6= q ∈ supp F, let i : pt → X be the inclusion of q. Then
F � i∗i∗F is surjective (which is always the case for closed immersions). By the second
condition, we have F = i∗i∗F or i∗i∗F = 0. The first case would imply supp F = {q} which
cannot be true, hence i∗i∗F = 0. From this we deduce that supp F = {p}. The first condition
will then imply that it must be a skyscraper.

That’s great. Any equivalence Coh(X) ' Coh(Y) then has to take point-like objects to
point-like objects, i.e. skyscrapers to skyscrapers. Hence it will define a map X→ Y, which
is forced to be an isomorphism. [To make this last part rigorous, one needs to define what
families of points are. If S is a variety, then families of points in Coh(S× X) correspond to
graphs of morphisms S→ X. Doing this properly is a little delicate.]

14.1. Ampleness. — Before proceeding with the Bondal–Orlov theorem, let’s recall some
basics of ample bundles.

Let V be a vector space. The variety P(V) is the prototype of a moduli space. The
breakdown goes a little something like this.

– The moduli problem: we wish to parameterize lines (through the origin) in V.
– Families (aka the moduli functor): if S is a space, we must define what is a family of
lines in V, parameterized by S.

– Moduli space: we find a variety P(V) which “represents” our moduli functor. More
precisely: maps S→ P(V) correspond to families of lines in V, parameterized by S.

To recap, the variety P(V) is parameterizing lines in V. If S→ P(V), each s ∈ S gives rise
to a line Ls ⊂ V which varies nicely as s varies in S. In particular, there is a universal
family of lines on P(V) corresponding to the identity P(V) → P(V). We will see now that
this universal family corresponds to the tautological bundle O(–1).

Recall that O(–1) is defined as the subset of P(V)× V consisting of pairs (p, v) such that
v ∈ p, when p is viewed as a line in V. The dual bundle is called O(1) = Hom(O(–1),O). In
general we define O(k) = O(±1)⊗|k| depending on whether k is positive or negative.

Recall the following fact about projective space.
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– H0(P(V),O(k)) = Symk V∗, i.e. degree k homogeneous polynomial functions on V.
Notice this is zero when k < 0.

– Hi (P(V),O(k)) = 0 for 0 < i < N = dimP(V)
– HN(P(V),O(k)) ' (Sym–k–N+1 V∗)∗

where the last bulletpoint is Serre duality.

Theorem 14.9 (Euler sequence). — We have a short exact sequence

0→ O(–1)→ O⊗C V→ T(–1)→ 0

where T is the tangent bundle of P(V). It follows that the canonical bundle of P(V) is
ωP(V) = O(– dimV).

Let f : X→ P(V) be any map. Thus on X we have an exact triangle

f ∗O(–1) = OX(–1)→ OX ⊗C V→ f ∗(T)(–1)→

but since each term is a vector bundle (which are f ∗-projective) it’s actually a short exact
sequence of sheaves. Call VX = OX ⊗C V. We claim that maps X→ P(V) are actually the
same thing as rank one sub-bundles of VX, i.e. inclusions L ↪→ VX where the quotient
VX/L is locally free.

Indeed, suppose you have such a sub-bundle L ↪→ VX, how do we define f : X→ P(V)?
Well, if x ∈ X, the fibre Lp ⊂ V is a line in V, hence a point of P(V)! So f : X→ P(V) sends
x to Lx . The condition that VX/L is locally free makes sure that Lx ↪→ V is always injective.
It’s easy to check then that f ∗O(–1) = L.

Remark 14.10. — Recall that we have an injection of sheaves O(–1) ↪→ O on P1. However,
the quotient is k(p), for some p ∈ P1. Indeed, the map O(–1)x → C on fibres is an
isomorphism everywhere, except at p where it’s the zero map.

Let’s go back to moduli problems. If S is a variety, we define an S-family of lines in V
to be a line bundle L on S together with an inclusion L ↪→ VS = V ⊗C OS such that the
quotient VS/L is locally free. The discussion above (with X replaced by S) shows that any
family of lines gives rise to a map S→ P(V). Conversely, a map S→ P(V) gives rise to a
family of lines by pulling back O(–1). Hence, we’ve just shown that P(V) is truly the moduli
space of lines in V and that O(–1) is the universal family of lines.

14.1.1. Dualize. — The dual point of view is also useful. A sub-bundle L ⊂ VX corresponds
to a surjection V∨X � L∨. So, we may describe maps to P(V) as quotients V∨X � L∨, with
L a line bundle. Dually to before, f ∗O(1) = L∨.

14.1.2. Globally generated. — So far, we’ve seen that if L is a line bundle on X, if we have
an inclusion L ↪→ VX then we induce a map f : X→ P(V), such that L = f ∗O(–1). Dually,
if we have a surjection VX � L we get a map g : X→ P(V∨) such that L = g∗O(1). So the
following question is natural: if L is a line bundle on X, when can we find an inclusion
L ⊂ VX or a surjection VX � L∨?

Traditionally, the notation is dual to ours: so that one asks when there is a surjection
VX � L.
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Let, as usual, γ : X→ pt. Note that VX = γ∗(V). Thus

Hom(VX, L) = Hom(V, R0γ∗L) = Hom(V,H0(X, L)).

In other words, we are looking for linear maps V→ H0(X, L).
In particular, VX → L factors through as VX → H0(X, L)⊗C OX → L thus if VX � L is

surjective then H0(X, L)⊗C OX � L must also be surjective.

Definition 14.11. — We say L is globally generated if the natural evaluation map H0(X, L)⊗C
OX → L is surjective.

If V = H0(X, L)∨, a globally generated line bundle always gives rise to a map X→ P(V).

14.2. Ample. — Here’s an example of a globally generated line bundle: L = OX. However,
if X is proper (and integral) then H0(X,OX) = C. So the induced map is X→ P0 = pt. Not
very interesting. Ampleness comes in precisely to rule out this case.

Definition 14.12. — A line bundle L on X is very ample if there is an inclusion i : X ↪→ P(V)
such that L = i∗O(1). We say L is ample if there exists k ≥ 0 such that L⊗k is very ample.
Finally, we say L is anti-ample if L∨ is ample.

14.2.1. Hilbert. — Let E, F ∈ D(X), we define the Euler characteristic to be

χ(E, F) =
∑
i

dimC Exti (E, F).

Digression 14.13. — We can rephrase this in a more pretentious way as follows. If W ∈ D(C)
is a (bounded) complex of (finite dimensional) vector spaces, we define its dimension to be

dimW =
∑
i

(–1)i dimWi =
∑
i

(–1)i dimHi (W).

If E, F ∈ D(X) and γ : X→ pt is as usual the map to a point, we have

χ(E, F) = dimRHomX(E, F) = dim γ∗Hom(E, F).

As a special case, we have

χ(X, F) = χ(OX, F) =
∑
i

(–1)i dimHi (X, F)

which is sometimes called the holomorphic Euler characteristic (to distinguish it from the
topological Euler characteristic of the topological space X).

Let us fix L ∈ D(X). We call E(n) = E⊗ L⊗n. We define the Hilbert function of E to be
HE(k) = χ(X, E(n)). The Hilbert function obviously depends on L. When L is an ample
line bundle, this function HE(k) is actually polynomial and the corresponding polynomial is
called the Hilbert polynomial of E. The coeffiecints of this polynomial contain information
about E. We will content ourselves with the following fact.

Proposition 14.14. — Let F ∈ Coh(X) and let L be ample. Then degHF = dim supp F.
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14.3. Proof of Bondal-Orlov. — We will mimic the proof of Gabriel’s theorem, namely
we want to characterize skyscrapers categorically. Recall that S = (–)⊗ ωX[dimX] denotes
the Serre functor, which is intrinsic to the category D(X). We say an object E ∈ D(X) is
point-like if

– Hom(E, E) = C.
– Hom(E, E[i]) = 0 for i < 0.
– There exists r ∈ Z and an isomorphism S(E) ∼= E[r ].

Clearly, if E = k(p) is a skyscraper, then it’s pointlike. This is because S(k(p)) = k(p) ⊗
ωX[dimX] = k(p)[dimX]. Same goes for k(p)[j ] for any j .

It’s also clear that point-like objects are perserved under equivalences (since Serre
functors and shifts commute with those). What we need to show is that indeed, a point-like
object is always a skyscraper (up to maybe a shift). This is not true in general. Indeed,
suppose X is an elliptic curve. Then SX = [1]. If L is any line bundle, we have

– Hom(L, L) = Hom(O,O) = C
– Hom(L, L[i]) = 0 for i < 0
– S(L) = L[1].

So in this case point-like objects can be very far from being actual points.

Remark 14.15. — In general we call a category T with Serre functor ST = [d ] Calabi-Yau
of dimension d . Or we just write CYd . If X is a smooth and projective variety has trivial
canonical bundle ωX = OX, then D(X) is CYdimX. The converse is not true.

Going back to the theorem, suppose X now has ample canonical bundle. Let E be point-
like. Suppose actually E ∈ Coh(X) is a sheaf. The condition S(E) = E[r ] for some r means
E⊗ ωX[dimX] = E[r ], which implies r = dimX. More importantly, we see that E⊗ ωX = E.
Consider now the Hilbert polynomial HE of E. Since the value HE(k) is constant, its degree
must be zero. In particular, dim suppE = 0. The condition Hom(E, E) = C then lets us
conclude that E is k(p) for some p.

For a general complex E, one must work a little harder. The same argument implies
that each cohomology sheaf Hi (E) is supported in dimension zero. Moreover, if it were
supported in more than one point we’d violate Hom(E, E) = C, so E must be supported at a
single point. Suppose Ha(E) 6= 0 6= Hb(E) for a minimal and b maximal. Since Ha(E), Hb(E)
are modules supported at the maximal ideal of a local artinian ring, there exists a non-zero
map Hb(E)→ k(p)→ Ha(E). Thus we have a non-zero map

E[b]→ Hb(E)→ Ha(E)→ E[a]

and since a – b < 0, this contradicts Hom(E, E[i]) = 0 for i < 0.
This shows that when ωX is ample, any point-like object is actually the shift of a

skyscraper. The case where ω∨X is similar, by using the inverse of the Serre functor.
To prove the Bondal-Orlov theorem, we may argue as follows. We only sketch the details.

By being a little careful, we can define a moduli space of point-like objects of D(X). Call
this PX. In general we have an embedding X→ PX. If D(X) ' D(Y) is an equivalence, then
point-like objects are sent to point-like objects, so PX ' PY. If we assume ωX is ample or
anti-ample, then (up to modding out by the action of the shifts) X→ PX is an isomorphism.
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So we look at the map in the other way Y→ PY ' PX ' X. Then we check that Y→ X is
both an open and a closed immersion, which implies it’s an isomorphism.

14.4. Autoequivalences. — Gabriel’s theorem actually proves more, it gives a charac-
terization of the group of auto-equivalences of Coh(X). There are two obvious sources
of auto-equivalences: automorphisms and tensoring with line bundles. Gabriel says that
actually these are all!

Aut(Coh(X)) = Pic(X)n Aut(X)

where if f : X→ X is an automorphism we consider the autoequivalence f∗ = (f ∗)–1 (because
pullback is contravariant).

Bondal-Orlov shows the analogous result: if X has ample or anti-ample canonical bundle
then

Aut(D(X)) = Z× Aut(Coh(X))

where Z acts via shifts.

15. Chapter 5: kernels

Consider p : X× Y, q : X× Y→ Y. If K ∈ D(X× Y) we define the integral transform with
kernel K to be the functor ΦK : D(X)→ D(Y) defined as

ΦK(E) = q∗(K⊗ p∗E).

Example 15.1. — The composition of integral transforms is an integral transform. If
ΦK,ΦL are transforms, then the kernel defining the composition ΦK ◦ ΦL is denoted by
K ∗ L and called the convolution of kernels.

When an integral transform is an equivalence, we say it’s a Fourier–Mukai transform. We
also say X and Y are Fourier–Mukai partners.

If f : X→ Y is any map, then we have a morphism Γ : X→ X× Y sending x to (x, f (x)).
Let K = Γ∗OX, then ΦK = f∗.

Example 15.2. — In the case where f = id, we typically call Γ = ∆. If E ∈ D(X), then
Φ∆∗E(F) = E⊗ F.

Suppose g : Y→ X. We have Λ : Y→ X× Y sending y to (g (y), y). Then ΦΛ = g∗.

Convention: suppose K ∈ D(X × Y). We will write ΦK for q∗(K ⊗ p∗(–)) and ΨK =
p∗(K⊗ q∗(–)).

Proposition 15.3. — Let Φ = ΦK be an integral transform. Define

ΦL = ΨK∨ ◦ SY
ΦR = SX ◦ΨK∨

Then ΦL is the left adjoint of Φ and ΦR is the right adjoint of Φ.
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Define

KL = K∨ ⊗ q∗ωY[dimY]

KR = K∨ ⊗ p∗ωX[dimX]

we have

ΦL = ΨKL ΦR = ΨKR .

Theorem 15.4 (Orlov). — Let F : D(X)→ D(Y) be a fully faithful exact functor. Then there
exists K (unique up to isomorhism) and an isomorphism of functors F ' ΦK.

Remark 15.5. — If one is willing to use enhancements (i.e. consider derived categories as
dg or ∞-categories) then any (dg or∞) functor is an integral transform.

This suggests that the category of (exact, C-linear) functors Fun(D(X), D(Y)) should be
equivalent to D(X× Y). This, however, is not the case.

Remark 15.6. — Let C be an elliptic curve, i.e. ωC = OC is trivial. Let O∆ be the structure
sheaf of the diagonal in C × C. Since C × C is a surface and ωC×C = OC×C, we have
Ext2(O∆,O∆) = Hom(O∆,O∆) = HomC(OC,OC) = C 6= 0. This means there is a non-zero
map τ : O∆ → O∆[2] in D(C× C).

On the other hand, consider the induced natural transformation Φτ : id→ id[2], where
we just used the fact that ΦO∆

= id. If E ∈ D(C), then Φτ (E) : E → E[2] is an element of
Ext2(E, E).

If E ∈ Coh(C), then Φτ (E) = 0 as dimC = 1. In general, we have seen that any E =
⊕

Fi [i]
with Fi ∈ Coh(C). This implies that Φτ (E) is the zero morphism for any E.

What have we learned? Natural transformations between functors do not correspond to
morphisms between kernels. As usual, to fix this one needs enhancements.

Proposition 15.7. — Let Ki ∈ D(Xi × Yi ) be kernels inducing equivalences ΦKi : D(Xi )
∼→

D(Yi ), for i = 1, 2. Then the box product K1 � K2 induces an equivalence ΦK1�K2 : D(X1 ×
X2)→ D(Y1 × Y2).

Recall that the box product is defined by tensoring the pullbacks of the two objects from
each factor. Concretely, if πi : (X1 × X2)× (Y1 × Y2)→ Xi × Yi denotes the projection, for
i = 1, 2, then K1 � K2 = π∗1 (K1)⊗ π∗2 (K2).

Proof. — Recall that the composition of integral transforms is an integral transform, via
convolution of kernels. Let Li denote the kernel corresponding to the inverse of ΦKi . We
know Ki ∗ Li = O∆ and Li ∗ Ki = O∆, where we are abusing the ∆ notation.

To check K1�K2 induces an equivalence, it suffices to check that (K1�K2)∗(L1�L2) = O∆,
and similarly for the opposite convolution. Exercise in base change.

15.1. Grothendieck group. — We now define the group K(X) = K(Coh(X)). It is the free
abelian group spanned by isomorphism classes of coherent sheaves where, for each short
exact sequence

0→ A→ B→ C→ 0
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we have the relation [B] = [A] + [C]. Notice that the class [0] is the zero element, and
moreover [A⊕ B] = [A] + [B].

Remark 15.8. — This definition makes sense for any abelian category.

Digression 15.9. — K(X) should actually be denoted by K0(X) as there are higher K-groups.
We will not consider those here (they are basically impossible to compute).

This definition can actually be extended to D(X). Define the Grothendieck group K′ of
D(X) to be the free abelian group spanned by isomorphism classes of complexes where, for
each exact triangle

E→ F→ G
+→

we have [F] = [E] + [G].

Remark 15.10. — As before, this definition makes sense for any triangulated category.

Proposition 15.11. — The two Grothendieck groups we just defined actually coincide.

Proof. — Indeed, if A ∈ Coh(X) we can view it as a complex sitting in degree zero. A short
exact sequence becomes an exact triangle, so we have a well defined group homomorphism
K(X)→ K′. On the other hand, given E ∈ D(X) we always have (using truncations)

[E] =
∑
i

(–1)i [Hi (E)] =
∑
i

(–1)i [Ei ]

in K′ (the last equality is satisfied only if E is being represented by a bounded complex E•

of coherent sheaves). Hence the map K(X)→ K′ is bijective.

We’ll simply forget about the notation K′ from now on (it’s a made up notation anyway)
and just write K(X) to mean either.

Since X is always assumed to be smooth and projective, the tensor product E⊗ F of two
complexes still lives in D(X), i.e. it stays bounded (this was because any sheaf has a bounded
resolution by vector bundles). Hence, K(X) becomes a ring under (derived) tensor product.

Remark 15.12. — Notice that it’s important the tensor product is derived, because other-
wise it wouldn’t be compatible with the defining equivalence relation of K(X). Recall that, if
A, B ∈ Coh(X), we write Tori (A, B) = H–i (A⊗ B).

The product structure on K(X) is then

[A] · [B] = [A⊗ B] =
∑
i

(–1)i [Tori (A, B)].

Similarly to ⊗, any (exact) functor Φ : D(X)→ D(Y) will induce a group homomorphism
K(X)→ K(Y) by taking [E] to [Φ(E)]. In particular, for f : X→ Y we have

f∗ : K(X)→ K(Y)

[E] 7→ [f∗E]

if A ∈ Coh(X) we have [f∗A] =
∑
i (–1)

i [Rif∗A]. Justifying this last line actually needs some
work (but it’s easy once we are allowed to use spectral sequences).
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Notice that f ∗ : K(Y)→ K(X) is not only a group hom, but also a ring homomorphism.
Since f ∗(E⊗ F) = f ∗E⊗ f ∗F.

Remark 15.13. — Notice that [E[k]] = (–1)k [E].

Euler. — The Grothendieck group comes with a bilinear map

χ : K(X)⊗ K(X)→ Z

χ(E, F) =
∑
i

(–1)i dimExti (E, F) =
∑
i

(–1)i dimHom(E, F[i])

called the Euler form.

Proposition 15.14. — Even though χ is not symmetric, its left and right radicals coincide.

Proof. — Indeed, suppose E is such that χ(E, F) = 0 for all F ∈ D(X). By Serre duality,
χ(G, E) = (–1)nχ(E, G⊗ ωX) where n = dimX. The rest follows.

The quotient of K(X) by its radical is sometimes called Knum(X) the numerical Grothendieck
group.

Digression 15.15. — We will mention later that the chern character provides an ungraded
isomorphism between K(X)⊗Q and CH(X)⊗Q the Chow groups of X tensored with Q.
The Chow groups are defined to be algebraic cycles modulo rational equivalence. In a
nutshell, we declare two subvarieties Y, Y′ ⊂ X rationally equivalent if there is a subvariety
Z ⊂ X × P1, flat over P1, such that Z × {0} = Y, Z × {∞} = Y′. In general understanding
even CH0(X), the group of zero-cycles, is highly non-trivial.

We say two cycles α,α′ are numerically equivalent α ∼= α′ if for any other cycle β the
intersection product α · β = α′ · β coincide. One defines N(X) to be the quotient of CH(X)
modulo numerical equivalence.

One shows that the chern character descends to an isomorphism between Knum(X)⊗Q
and N(X)⊗Q.

15.1.1. Integral transforms on K. — If K ∈ D(X × Y) then [K] ∈ K(X × Y) is a class in
the Grothendieck group. The integral transform ΦK : D(X) → D(Y) induces a group
homomorphism K(X)→ K(Y) defined by the same formula: the class [F] is sent to q∗([K] ·
[p∗F]).

Diagrammatically, we write

D(X) D(Y)

K(X) K(Y)

Φ

[ ] [ ]

Similarly, if we had a cohomology class e ∈ H∗(X × Y) we could do the following. If
α ∈ H∗(X) we can pull it back p∗α, cup it with e (which is Poincaré dual to intersecting ) and
push forward to Y. By pushforward here we mean the following simple thing. Cohomology
does not come with pushforward maps, but homology does. So we have q∗ : H∗(X× Y)→
H∗(Y). However, since our varieties are smooth and projective over C they are compact
complex manifolds. In particular, they come with a canonical orientation and hence a
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Poincaré duality isomorphism PD: Hk (X)
∼→ H2n–k (X), where n = dimX as a complex

manifold. Hence we may define q∗ : H∗(X × Y) → H∗(Y) by applying PD then q∗ in
homology then PD again. I guess for this to be rigorous we should interpret H∗(X) as
singular cohomology with rational coefficients. We should note that, while p∗ preserves the
grading in homology, q∗ shifts it. In general, if f : X→ Y is a map of varieties, f∗ will send
Hi (X) to Hi+2 dimY–2 dimX(Y).

In conclusion, given e ∈ H∗(X× Y) we may define a cohomological integral transform
Φe : H∗(X)→ H∗(Y) sending α to q∗(e ∪ p∗α). Note that if e does not live in a single degree,
the transform Φe might heavily mess up the grading in cohomology.

Starting with an integral transform between derived categories, we know how to obtain a
transform between the K-groups. How can we obtain one between cohomology groups? We
would need a way to pass from classes [E] to singular cohomology. Thankfully the Chern
character does the trick.

15.2. Chern classes. — Let E be a vector bundle on X. To E we may attach cohomology
classes ck (E) ∈ H2k (X,Z) called chern classes. These classes satisfy (and are uniquely
determined by a subset of) the following.

1. c0(E) = 1
2. f ∗ck (E) = ck (f

∗E)
3. for any short exact sequence 0→ E→ G→ F→ 0, ck (G) =

∑
i+j=k ci (E) ∪ cj (F)

4. on CPN, c1(O(–1)) = –t where t is the standard generator of the ring H∗(CPN,Z). In
other words t is Poincaré dual to the class of the hyperplane CPN–1 ⊂ CPN.

5. if rank of E is r then ck (E) = 0 for k > r .

For cohomology classes, we sometimes write αβ for α ∪ β.

Remark 15.16. — For example from the second axiom it follows that, for any trivial bundle
V⊗C O on any X, we have ck (V⊗C O) = 0 for any k > 0.

Remark 15.17. — Suppose E has a nowhere vanishing section. In other words an injective
map O→ E with locally free quotient. It follows that cr (E) = 0, where r is the rank of E.

More generally, if O⊕k injects in E with locally free quotient, we have 0 = cr (E) = cr–1(E) =
· · · = cr–k+1.

So we see a relationship between having linearly independent sections and vanishing
chern classes.

What we actually want is the chern character. The chern character ch(E) of a vector
bundle E is a cohomology class ch(E) ∈ H∗(X,Q), hence it is a sum ch(E) =

∑
k chk (E)

where chk (E) ∈ H2k (X,Q). It satisfies the following.

1. ch0(E) = rk(E)
2. ch1(E) = c1(E)
3. for any short exact sequence 0→ E→ F→ G→ 0 we have ch(F) = ch(E) + ch(G)
4. ch(E⊗ G) = ch(E) ∪ ch(G).
5. chi (E∨) = (–1)i chi (E)
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To define it, we first look at line bundles. For L a line bundle, we define

ch(L) = exp(c1(L))

where exp is defined as usual as a formal power series (but since powers of cohomology
classes vanish after a while, this is really only a polynomial, so it’s legit).

Remark 15.18. — It’s because of the exp factor (and all the denominators it comes with)
that we had to switch from H∗(X,Z) to H∗(X,C).

To define the chern character for a general vector bundle, one proceeds as follows. Let
E be a vector bundle on X. Let Y be the relative flag variety of E, which parameterizes
pairs (x, F) where x ∈ X and F is a full flag of the fibre Ex (full flags are maximal sequences
F0 ⊂ F1 ⊂ F2 ⊂ · · ·Ex where each quotient Ei/Ei–1 is one-dimensional). There is an
obvious map p : Y→ X by forgetting the flag.

It turns out that p∗ : H∗(X,Q) → H∗(Y,Q) is injective (same if we were doing this for
Chow groups). Tautologically, p∗E comes with a filtration where all quotients are line
bundles. By enforcing additivity on short exact sequence we may then define ch(E) for any
vector bundle.

Grothendieck again. — OK, what does this have to do with the Grothendieck group? Well,
ch is additive on exact sequences of vector bundles. Any coherent sheaf can be resolved by
finitely many vector bundles hence we may define

ch(F) =
∑
i

(–1)i ch(Ei )

for any resolution E• of F with Ei vector bundles. Using this, one immediately has a
well-defined ring homomorphism

ch : K(X)→ H∗(X,Q)

Remark 15.19. — This can actually be refined, by replacing H∗(X,Q) with the Chow group
CH∗(X)⊗Q. In other words, chern classes can be refined to produce not just a singular
cohomology class but actually algebraic cycles (up to rational equivalence). In particular,
chern character are defined over any field. One can also show that ch is an isomorphism
up to torsion. In other words, K(X)⊗Q ' CH∗(X)⊗Q via ch.

Since K(X) = K(Coh(X)) = K(D(X)) one may define ch(E) for any E ∈ D(X).

Todd. — One natural question arises. Suppose f : X→ Y is a map (as always, everything
smooth and projective). We always have f ∗ ch(E) = ch(f ∗E). In other words, the following
diagram commutes.

K(Y) H∗(Y,Q)

K(X) H∗(X,Q)

f ∗

ch

f ∗

ch

What happens with pushforward? Turns out that in general f∗ ch(E) 6= ch(f∗E). Nevertheless,
Riemann-Roch comes to the rescue! For this, we need to introduce the Todd class.
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Similarly to ch we define it first for line bundles

td(L) =
c1(L)

1 – exp(–c1(L))

and then extend it to all vector bundles.
The Todd class is multiplicative, meaning that td(E1 ⊕ E2) = td(E1) td(E2).

Remark 15.20. — In my experience, what one does in practice is remember the formal
properties of characteristic classes and look up the explicit formula in the back of Hartshorne
whenever one needs to compute anything. For example,

ch = rk +c1 +
1
2
(c21 – 2c2) +

1
6
(c31 – 3c1c2 + 3c3) + · · ·

td = 1 +
1
2
c1 +

1
12
(c21 + c2) +

1
24
c1c2 · · ·

By the Todd class of X one means td(X) = td(TX) the Todd class of its tangent bundle.

Theorem 15.21 (Grothendieck-Riemann-Roch). — For any α ∈ K(X), we have

ch(f∗α) td(Y) = f∗(ch(α) td(X))

In other words, td(X) is the fudge factor that makes the diagram we want commute.

K(X) H∗(X,Q)

K(Y) H∗(Y,Q)

f∗

ch(–) td(X)

f∗
ch(–) td(Y)

In the special case of f : X → pt, we obtain what is classically called Hirzebruch-
Riemann-Roch. In this case, f∗α is typically denoted by

∫
X α, as it’s really integrating a

form against the fundamental class.

Theorem 15.22 (HRR). — For any e ∈ K(X)

χ(e) =
∫
X
ch(e) td(X)

which is a special case of

χ(E, F) =
∫
X
ch(E∨) ch(F) td(X)

(it’s the case where E = OX)

When dimX = 1 we obtain the classical Riemann-Roch. Let’s see how. If C is a curve,
then Hk (C) = 0 for k > 2. So we can only have c0 and c1 classes. Moreover, classically one
calls the degree of a vector bundle the quantity deg(E) =

∫
C c1(E).

Since C is a curve, the Todd class is also pretty easy:

td(C) = 1 +
1
2
c1(TC) = 1 –

1
2
c1(ωC)



MATH 566 - SPRING 2017 75

One need a basic fact from topology. Let X be a complex manifold of dimension n.∫
X
cn(TX) = χ(X)

in the case of a curve this becomes ∫
C
c1(TC) = 2 – 2g

where g is the genus of the curve.

Theorem 15.23 (RR). — Let C be a curve. Let L be a line bundle on C. HRR tells us

χ(L) =
∫
C
ch(L) td(C) = deg(L) +

1
2
deg(TC) = deg(L) + 1 – g .

On the other hand,

χ(L) = dimH0(C, L) – dimH1(C, L) = dimH0(C, L) – dimH0(C, L∨ ⊗ ωC).

So if we interpret L as giving be a divisor class D, this becomes l(D) – l(KC – D) where KC
is the divisor class corresponding to ωC. We may rewrite

l(D) – l(KC – D) = deg(D) + 1 – g

which is how the theorem is classically stated.

15.3. Mukai vectors. — To obtain compatibility with integral transforms we need one
last bit of definition. We define the Mukai vector of E to be

v(E) = ch(E)
√
td(X)

The square root exists as td is of the form 1 + α with α in degrees bigger than zero.
With all this in place, Riemann-Roch tells us that the following diagram commutes for

any e ∈ K(X× Y).

K(X) K(Y)

H∗(X,Q) H∗(Y,Q)

Φe

v v
Φv(e)

where we wrote Φe for the integral transform at the level of the K-group with kernel e and
Φv(e) for the integral transform at the level of cohomology with kernel v(e).

Proposition 15.24. — In particular, let P ∈ D(X× Y). Then, for any E ∈ D(X)

q∗(v(P)p∗(v(E))) = v
(
q∗(P⊗ p∗E)

)
Remark 15.25. — Notice that the cohomological integral transform ΦH

v(P) : H
∗(X,Q) →

H∗(Y,Q) is Q-linear but not a ring homomorphism. Moreover, it does not respect the
grading (not even up to a shift). However, since ch and td are even, ΦH respects the parity,
in the sense that

⊕
k H

2k (X) is sent to
⊕

k H
2k (Y) and

⊕
k H

2k+1(X) is sent to
⊕

k H
2k+1(Y).
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Proposition 15.26. — Suppose ΦP : D(X) → D(Y), ΦQ ◦ D(Y) → D(Z) are two integral
transforms and let ΦR = ΦQ : ΦP be the composition. Write ΦH for the associated map on
H∗ by taking Mukai vectors everywhere. Then ΦH

v(R) = ΦH
v(Q) ◦ ΦH

v(P).

Proposition 15.27. — Suppose ΦP is an equivalence, then ΦH
v(P) is an isomorphism of

Q-vector spaces.

Remark 15.28. — This statement is actually surprising, there is no a priori reason for why
it should be true. Taking K-classes E 7→ [E] is a surjective operation, in the sense that any
class α ∈ K(X) is of the form [E] for a complex E ∈ D(X). However, the chern character
ch : K(X) → H∗(X,Q) is very far from being surjective! Indeed, take X an elliptic curve,
topologically it’s S1 × S1 therefore it has non-zero classes in H1. But ch(E) is even for any E.

Proof. — The proof is actually simple. The inverse of ΦP is given by a ΦQ (but going in
the opposite direction). We know ΦQ ◦ΦP = ΦO∆

. I.e. the convolution Q ∗P = O∆. Passing
to cohomology, the convolution v(Q) ∗ v(P) = v(O∆). So, as silly as it is, if we show that
ΦH
v(O∆) is the identity, we are actually done. Consider the diagonal map i : X→ X× X. We

have O∆ = i∗OX. GRR tells us that

ch(O∆) td(X× X) = i∗(ch(OX) td(X)) = i∗ td(X)

where we used ch(OX) = 1. We also have

i∗
√
td(X× X) = td(X)

as TX×X = TX � TX.

α
?
= q∗(v(O∆)p∗(α))

= q∗
(
ch(O∆)

√
td(X× X)p∗α

)
= q∗

(
i∗(td(X)) td(X× X)–1

√
td(X× X)p∗α

)
= q∗

(
i∗
(
td(X)i∗

(
td(X× X)–1

√
td(X× X)

))
p∗α

)
= q∗(i∗(1)p∗α)

= q∗i∗(i∗p∗α)

= α.

Remark 15.29. — Note that from the proof we’ve learned that

ch(O∆)
√
td(X× X) = i∗(1)

Example 15.30. — Let T: D(X)→ D(X) be T(E) = E[1] the shift by one functor. Then the
induced map on H∗(X) is multiplication by –1.

Example 15.31. — Consider the functor ⊗L for L a line bundle. Then the induced map
on H∗(X) is multiplication by exp(c1(L)).
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15.4. Hodge theory. — When considering cohomology with complex coefficients we find
the Hodge decomposition

Hk (X,C) =
⊕
p+q=k

Hp,q (X)

Hp,q = Hq,p

Hp,q (X) = Hq (X,Ωp)

Betti numbers are defined as bi = dimHi (X,Q), hodge numbers are defined as hp,q =
dimHp,q (X).

It is a fact that chern classes (and all other characteristic classes derived from them) are
(p, p) classes. Hence

v(?) = ch(?)
√
td(X) : K(X)→

⊕
p

Hp,p(X) ∩ H2p(X,Q).

Proposition 15.32. — Let ΦQ : D(X) → D(Y) be any equivalence. Then ΦH
Q induces an

isomorphism ⊕
p–q=i

– dimX≤i≤dimX

Hp,q (X) −→
⊕
p–q=i

– dimX≤i≤dimX

Hp,q (Y)

Proof. — The key fact to use is that H∗(X×Y,Q) has a Kunneth decomposition. Concretely,
we may write

ch(Q)
√
td(X× Y) =

∑
αp,q � βr ,s

But since ch and td are (p, p)-classes, only terms with p + r = q + s will be non-zero. Let’s
have a look at the integral transform. We have

Φ(α) = q∗(p∗α ∧
∑

αp,q � βr ,s )

= q∗(p∗α ∧ p∗(αp,q ) ∧ q∗(βr ,s ))

=
∑∫

X
(α ∧ αp,q )βr ,s

If α ∈ Ha,b(X), then only the terms where a+p = dimX = b+q survive. Thus, a–b = q–p = r–s.
In other words, a class α ∈ Ha,b(X) with a – b = i is sent to a sum of classes

∑
cr ,sβr ,s with

r – s = i.

15.5. Elliptic curves. — Let C be a curve. If genus of C is different from one, then ωC is
either anti-ample (i.e. C = P1) or ample. In this case the Bondal–Orlov theorem applies and
we have that D(Y) ' D(C) if and only if Y ' C. What happens for elliptic curves? Hodge
theory comes to the rescue.

Theorem 15.33. — Let E be an elliptic curve. Then D(E) ' D(Y) if and only if E ' Y.
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One direction is obvious. Suppose D(E) ' D(Y), then we know already 1 = dimE = dimY.
We then know that Y must also be an elliptic curve (otherwise we could’ve applied the
Bondal–Orlov theorem). To complete the proof, we need to recall a few basic facts.

Let C be a curve. The Jacobian of C is defined as

J(C) =
H0(C,ωC)∗

H1(C,Z)

where the map H1(C,Z)→ H0(C,ωC)∗ is defined as

γ 7−→
∫
γ

α 7→
∫
γ
α

so it sends a 1-cycle γ to the functional sending a 1-form α to the integral
∫
γ α.

Here is another thing we can do. Pick a point p0 ∈ C. We would like to define a map
from C to H0(C,ωC)∗ by sending p to

∫ p
p0
(–). But for this to be well defined, it should not

depend on the choice of a path from p0 to p. Hence if we mod out by the “periods”, i.e. the
integrals over closed curves we are in business.

C 3 p 7−→
∫ p

p0
(–) ∈ J(C) =

H0(C,ωC)∗

H1(C,Z)

This map C→ J(C) is called the Abel-Jacobi map. It is a standard fact that E is an elliptic

curve if and only if the Abel-Jacobi map is an isomorphism. In other words, E ' H0(E,ωE)∗

H1(E,Z)
.

The connection to derived equivalences goes via Hodge theory. Recall

H1(C,C) = H1,0(C)⊕ H0,1(C) = H0(C,ωC)⊕ H1(C,OC)

By Serre duality, H1(C,OC) ' H0(C,ωC)∗. On the other hand, by Poincaré duality H1(C,Z) '
H1(C,Z), since these groups are free of finite rank. Our earlier map H1(C,Z)→ H0(C,ωC)∗

then induces an inclusion

H1(C,Z) ' H1(C,Z)→ H0(C,ωC)
∗ ' H1(C,OC) = H0,1(C) ↪→ H1(C,C)

On the other hand, we have the natural inclusion H1(C,Z) ⊂ H1(C,Z)⊗ C = H1(C,C). One
can actually check that these coincide, so that H1(C,Z) really lands in H0,1(C) in the Hodge
decomposition.

Another basic fact is that, for an elliptic curve E, we have E ' H0,1(E)/H1(C,Z). This
essentially boils down to the Abel-Jacobi map. What is that? Pick a point p0 ∈ C. We
would like to define a map from C to H0(C,ωC)∗ by taking p to

∫ p
p0
. But, for a 1-form α,

the integral
∫ p
p0
α might depend on the path we pick. To remedy this, we mod out by the

“periods” i.e. integrals over closed curves. This means we have a well defined map C→ J(C)
called the Abel-Jacobi map.

For an elliptic curve, the Abel-Jacobi map is an isomorphism. By invoking Poincaré and
Serre as above, we see E ' H0,1(C)/H1(C,Z).
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proof of Theorem 15.33. — So, what has the proof boiled down to? We already know Y has
to be an elliptic curve. To make sure E and Y are the same elliptic curve, it would suffice
to identify H1(E,Z) with H1(Y,Z) and H0,1(E) with H0,1(Y), in such a way that the inclusion
H1(E,Z) ⊂ H0,1(E) is sent to the corresponding inclusion for Y.

Let Φ : D(E)→ D(Y) be our equivalence, with kernel Q ∈ D(E× Y). Since both E and Y
are elliptic curves, their tangent bundles are trivial, therefore td(E× Y) = 1. If α ∈ H1(X,Z)
then v(Q) ∧ p∗α is still an integral class. Indeed, v(Q) = ch(Q) = r + c1(Q) + stuff. But r , c1(Q)
are integral and the higher order stuff does not contribute to ΦH(α). Therefore, we have an
isomorphism H1(C,Z) ' H1(Y,Z).

Let us have a look at the Hodge theory. We know
⊕

p–q=i H
p,q is preserved. But for

i = –1 there is only one choice: H0,1. So H0,1(E) ' H0,1(Y) under Φ.
Finally, since the inclusion H1(E,Z) ⊂ H0,1(E) is basically complexification, the compati-

bility comes for free.

Great, we have learned that the derived category of a curve recovers the curve. Turns
out that a description of Aut(D(C)) is also possible for elliptic curves, but we might not have
time to go into that.

15.6. Mukai pairing. — Recall the Euler pairing χ. If Φ is an equivalence,

χ(E, F) = χ(Φ(E),Φ(F)).

The Mukai pairing will be a cohomological shadow of this. Notice that by Riemann-Roch
we have

χ(E, F) =
∫
X
ch(E∨) ch(F) td(X)

=
∫
X
v(E∨)v(F)

It would be nice to write v(E∨) purely in terms of v(E). Let us define the dual of an even
class e =

∑
i ei with ei ∈ H2i (X,Q) as

e∨ =
∑
i

(–1)iei

We have

ch(E∨) = ch(E)∨.

Proposition 15.34. — We have

v(E∨) = v(E)∨ exp(c1(X)/2).

Proof. — Proof boils down to proving that td(X) = td(X)∨ exp(c1(X)) which can be shown
using the splitting principle, by writing

td(X) =
∏ γi

1 – exp(–γi )

and applying duals.
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Thus we have

χ(E, F) =
∫
X
exp(c1(X)/2)v(E)

∨v(F).

A general cohomology class α ∈ H∗(X,C) can be written as α =
∑
j αj with αj ∈

Hj (X,C). We define the dual as

α∨ =
∑
j

√
–1
j
αj

When α is even this clearly coincides with the dual defined earlier.
The Mukai pairing of two cohomology classes α,β is defined to be

〈α,β〉 =
∫
X
exp(c1(X)/2)α

∨β.

Using this pairing, RR takes the nice compact form

χ(E, F) = 〈v(E), v(F)〉

Remark 15.35. — If c1(X) = 0, then 〈, 〉 is symmetric if dimX is even and skew-symmetric
if dimX is odd.

Remark 15.36. — Dualizing is multiplicative: v∨w∨ = (vw)∨

Remark 15.37. — Let q : X × Y → Y be the projection, then q∗(v)∨ = (–1)dimXq∗(v∨) for
any v ∈ H∗(X× Y,C).

The following fact was shown by Mukai for surfaces and later generalized by Caldararu.

Proposition 15.38. — Let Φ : D(X)→ D(Y) be an equivalence. Then

ΦH : H∗(X,Q)→ H∗(X,Q)

is an isometry with respect to the Mukai pairing.

Proof. — One needs to show that 〈v,w〉 = 〈Φ(v),Φ(w)〉. But since Φ is an equivalence, this
is the same as showing that

〈Φ(v),w〉 = 〈v,Φ–1w〉

Let Q be the kernel realizing the equivalence Φ and let e = v(Q) be its Mukai vector. We
know a formula for ΦH(α), namely q∗(ep∗α). But we also know that Φ–1 is given by Fourier-
Mukai going in the opposite direction with kernel Q∨ ⊗ q∗ωY[n] with n = dimX = dimY.
The claim reduces then to a computation using the projection formula and the fact that [n]
acts as (–1)n in cohomology.
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16. Chapter 10: K3 surfaces

16.1. K3 surfaces. — Let’s collect some facts about K3 surfaces. A K3 surface is (for us) a
smooth projective surface X with ωX = OX and H1(X,OX).

Example 16.1. — A quartic hypersurface X ⊂ P3 is a K3 surface (for example you can
take x40 + x

4
1 + x

4
2 + x

4
3). This follows from adjunction. Indeed, ωX = i∗(ωP3 ⊗ O(4)) where

i : X ↪→ P3. Thus, ωX = i∗O(–4)⊗ O(4) = OX. On P3, we have a short exact sequence

0→ O(–4)→ OP3 → OX → 0

applying sheaf cohomology we get

H1(P3,O)→ H1(P3,OX) = H1(X,OX)→ H2(P3,O(–4))

where H1(P3,OX) = H1(X,OX) follows from the fact that i is a closed embedding (and
therefore an affine morphism). But we know (for example by looking it up in Hartshorne)
that if Hi (Pn,O(k)) is non-zero then i = 0 or i = n. Thus h0,1X = 0.

But there are other ways of constructing K3 surfaces (for example as double covers of
P2 branched over a sextic or Kummer surfaces).

A special case of HRR is Noether’s formula, which says

χ(X,OX) =
c21 (X) + c2(X)

12

We have χ(OX) = 2, c1(X) = c1(TX) = c1(ω∨X ) = –c1(ωX) = –c1(OX) = 0. Thus 24 = c2(X). But
c2(X) = e(X) is the topological Euler characteristic of X, i.e. the alternating sum of its Betti
numbers. Let’s write the Hodge diamond of X.

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

where the sum of the i-th row is the i-th Betti number bi = dimCHi (X,C).
Recall that Hodge symmetry implies hp,q = hq,p and Serre duality implies hp,q = hn–p,n–q

where n is the dimension. Indeed, Hp(X,ΩqX) = Hq (X,ΩpX). While, Hn–q (X,Ωn–pX )∨ =

Hq (X,∧n–pTX ⊗ ωX) and ∧n–pTX ⊗ ωX = Ω
p
X.
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For our K3, we have b1 = h0,1 + h1,0 = 2h0,1 = 0 and by Poincaré duality b3 = b1 = 0. We
also have 1 = b0 = b4. Since b0 – b1 + b2 – b3 + b4 = e(X) = 24, it follows that the Hodge
diamond is always of the form

1

0 0

1 20 1

0 0

1

From general facts about Fourier-Mukai transforms, we know that the derived category
remembers the sum of the columns in the Hodge decomposition.

16.2. Global Torelli. — All K3 surfaces are actually diffeomorphic (this is why topologists
speak of the K3 surface) and simply connected. It follows that H1(X,Z) = 0 and therefore
(by universal coefficients) H2(X,Z) is torsion-free. Cup product (aka intersection) is then a
pairing

H2(X,Z)× H2(X,Z)→ Z

which can be shown to be even, in the sense that α2 = (α,α) ∈ 2Z for any α ∈ H2(X,Z).
Algebraically, we should think of the map Pic(X) → H2(X,Z) given by taking a line

bundle L to its first chern class c1(L). More geometrically, we are sending a divisor D to
the Poincaré dual of the homology class [D]. By the exponential sequence and the fact that
H1(X,OX) = 0 we have that H1(X,O×X ) = Pic(X) ⊂ H2(X,Z) is an inclusion (and indeed the
map coming from the exponential sequence is the first chern class).

Let ρ be the rank of Pic(X). Since c1 sends Pic to H1,1(X) we must always have 0 ≤ ρ ≤ 20.
Notice that ρ = 0 means any line bundle is isomorphic to OX. However, since we assume X
to be projective (as opposed to a general complex K3 surface) we actually have 1 ≤ ρ ≤ 20.
This is because projectivity guarantees an embedding X ⊂ PN for some N. A generic linear
subspace H ⊂ PN of the correct codimension will intersect H ∩ X in a curve, producing a
non-zero divisor class on X (the so-called hyperplane class).

So, we have our lattice H2(X,Z) and its complexification comes with the Hodge decom-
position

H2(X,C) = H0,2(X)⊕ H1,1(X)⊕ H2,0(X)

As for elliptic curves, the Hodge structure determines completely the surface.

Theorem 16.2 (Global Torelli for K3 surfaces). — Two K3 surfaces X1, X2 are isomor-
phic if and only if the lattices H2(Xi ,Z) are Hodge isometric.
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A Hodge isometry is an isomorphism of groups φ : H2(X1,Z)→ H2(X2,Z) which respects
the pairing, and which induces an isomorphism φC(H2,0(X1)) = H2,0(X2).

The terminology period is sometimes used for the Hodge structure (the period is the
one-dimensional subspace H2,0(X) ⊂ H2(X,C), i.e. an element of PH2(X,C)).

16.3. Derived Torelli. — First, a simple fact.

Proposition 16.3. — Assume D(X) = D(Y). If X is K3 then Y is also K3.

Proof. — We know Y is a surface. We also know the order of ωY is the same as the order
of ωX, therefore ωY = OY. We know that h0,1X + h1,2X = h0,1Y + h1,2Y . Now, h1,2 = h2,1 = h0,1.

Therefore 0 = h0,1X = h0,1Y = H1(Y,OY).

The question we want to address is: when are two K3 surfaces derived equivalent? The
answer is in terms of (a variant of) the Mukai pairing.

A class in H2∗(X,Z) is of the form (α0,α1,α2) with αi ∈ H2i (X,Z). We define

〈(α0,α1,α2), (β0,β1,β2)〉 = α1β1 – α0β2 – α2β0 ∈ Z

which is minus the Mukai pairing from the previous section. In other words it’s the
intersection pairing minus the pairing between H0 and H4. Notice that in general the
Mukai pairing will be Q-valued, but c1 of a K3 surface is zero so no fractions are introduced.

By relabelling, we define H̃
∗
(X,Z) to be H2∗(X,Z), the even cohomology of X, equipped

with the following Hodge structure.

H̃
2,0

(X) = H2,0(X) H̃
1,1
(X) = (H0 ⊕ H4)(X)⊕ H1,1(X)

The “twist” in the grading of the Hodge structure is for (derived) convenience. After all,
derived categories remember the vertical lines in the Hodge diamond, so H̃ is precisely
collapsing the middle vertical line to a single piece of weight two.

In any case, with this convention the Mukai vector v(E) ∈ H∗(X,Z) of a complex lives in

H̃
1,1
(X). Notice that v(E) ∈ H∗(X,Z) because X is a K3 surface (in general you would have

fractions). Indeed, td(X) = 1 + c1/2 + (c21 + c2)/12 + · · · . The higher order terms all vanish
as X is a surface. Moreover, c1(X) = 0 so td(X) = 1 + td2(X) = 1 + c2/12. But we know that
c2(X) = e(X) = 24 so td(X) = (1, 0, 2).

Lemma 16.4 (Mukai). — Let P ∈ D(X1 × X2) with Xi a K3 surface. Then v(P) ∈ H∗(X×
Y,Z).

We omit the proof, which is a computation of characteristic classes plus GRR.

Corollary 16.5 (Mukai). — If Φ : D(X1)→ D(X2) is an equivalence, then ΦH : H̃
∗
(X1,Z)→

H̃
∗
(X2,Z) is a Hodge isometry.

Proof. — We already know that ΦH : H∗(X1,Q)→ H∗(X2,Q) is an isometry with respect
to the Mukai pairing. By the the proposition above, it restricts to an isometry with integer
coefficients. Since we know the sum of the Hodge pieces with p – q = i are preserved, we
conclude.
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Theorem 16.6 (Mukai-Orlov). — Two K3 surfaces X1, X2 are derived equivalent if and
only if there is a Hodge isometry H̃

∗
(X1,Z) ' H̃

∗
(X2,Z).

Before we prove this, some observations.
One, the shift by one functor [1] acts as multiplication by –1 in cohomology.
Two, if L ∈ Pic(X) is a line bundle, then tensoring by it defines an equivalence Φ : D(X)→

D(X). Earlier we checked that its effect on cohomology is multiplication by ch(L) =
exp(c1(L)) = 1 + c1(L), which is an integral class. Thus, for α = (r , l, s)

ΦH(α) = α. ch(L)

= (r , l, s) + (0, rc1(L), l .c1(L))

= (r , l + rc1(L), s + l .c1(L))

Three, the structure sheaf OX is what is called a spherical object. Attached to any such
object there is a spherical twist TOX

: D(X) → D(X) which is an autoequivalence (this was
defined by Seidel and Thomas, see details below). One checks that

TH
OX

(α) = α + 〈α, (1, 0, 1)〉(1, 0, 1).

These three operations will be useful in the proof below to manipulate cohomology
classes.

Proof of Theorem above. — One direction we already know. Suppose we have a Hodge
isometry φ. We will see that, similarly to elliptic curves, the whole problem is governed by
a single vector. In this case, φ(0, 0, 1) = v = (r , l, s), the image of the Mukai vector of a point.

Suppose v = (0, 0, 1). Then φ restricts to a Hodge isometry H∗(X1,Z) ' H2(X2,Z).
Therefore, by classic Torelli, X1 and X2 are isomorphic.

Suppose now r 6= 0. By applying the equivalence [1], we may assume r > 0. We now
appeal to a general theorem on moduli of sheaves.

Claim 16.7. — Suppose Y is a K3 surface and v, v′ ∈ H̃
1,1
(X,Z) are two classes with

〈v, v〉 = 0 and 〈v, v′〉 = 1. Then there exists another K3 surface M and a sheaf E ∈ D(Y×M)
such that the fibre v(Em) = v for all fibres Em of E at m ∈ M and such that the transform
ΦE : D(Y)→ D(M) is an equivalence.

In our setup, 〈v, v〉 = (0, 0, 1)2 = 0. Take v′ = φ(–1, 0, 0), then 〈v, v′〉 = 1. Thus there exists
a K3 surface M satisfying the assumptions as above. In particular, the composition

ψ : H̃
∗
(X1,Z)

φ→ H̃
∗
(X2,Z)

ΦH
E→ H̃
∗
(M,Z)

is a Hodge isometry sending ψ(0, 0, 1) = (0, 0, 1). By classic Torelli, X1 ' M. Therefore,
the isomorphism X1 ' M composed with the inverse of the equivalence ΦE yields an
equivalence D(X1) ' D(X2).

Finally, suppose now v = (0, l, s) with l 6= 0. If s 6= 0 we leave v alone. If not, we tensor
by a line bundle, for the following reason. Recall that, if L ∈ Pic(X), tensoring with it has
the effect of sending (0, l, 0) to (0, l, l.c1(L)). We then find L such that l.c1(L) 6= 0. Now we
apply the spherical twist around OX2 (see below for more details). By composing the two
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operations above, we see that v may be sent to a class of the form (r ′, l ′, s ′) with r ′ 6= 0.
Hence we reduce to the first case of the proof.

It goes without saying that the proof we just gave is highly unsatisfactory. Not only have
we treated classic Torelli as a mysterious black box, but the true heavy lifting was performed
by Claim 16.7 which we have not explained.

16.4. Spherical Twists. — Let S ∈ D(X). If E is any other object, we may consider the
evaluation map

RHom(S, E)⊗C S→ E(16.1)

and we call TS(E) its cone.
Assume now X is a K3 surface. We say S is spherical Hom(S, S) = C = Hom(S, S[2])

and Hom(S, S[i]) = 0 for all other i. In that case, Seidel and Thomas showed the functor
TS : D(X)→ D(X) is an equivalence.

Remark 16.8. — Spherical twists provide the first interesting auto-equivalence of D(X)
which is not visible at the level of Coh(X). Their definition was actually inspired by mirror
symmetry (spherical twists are mirror to Dehn twists).

Remark 16.9. — Taking cones is not functorial, so defining T as a cone is problematic.
Two solutions: use dg-categories or define T in terms of kernels.

Any line bundle L on a K3 surface is spherical. In particular, OX is spherical. Let’s
define TOX

in terms of kernels. We notice that E 7→ E is the identity, so the kernel is
O∆ ∈ D(X× X). While E 7→ H∗(X, E)⊗C OX has kernel OX×X. Indeed, q∗(OX×X ⊗ p∗E) =
q∗p∗E = H∗(X, E)⊗C OX. There is a natural map OX×X → O∆, which corresponds to the
evaluation map in (16.1). Its cone is precisely I[1], the ideal sheaf of the diagonal shifted by
one. Thus, TOX

(E) = ΦI[1](E). But what we care about is the effect on cohomology. If α is a
cohomology class, then TH

OX
(α) = ΦH

O∆
(α) – ΦOH

X×X
(α). Notice that td(X) = (1, 0, 2) so that√

td(X) = (1, 0, 1). Moreover,
√

td(X× X) = p∗(1, 0, 1).q∗(1, 0, 1). Thus,

ΦH
OX×X

(α) = q∗(p∗(1, 0, 1).q∗(1, 0, 1).p∗α)

= q∗p∗(α.(1, 0, 1))(1, 0, 1)

= –〈α, (1, 0, 1)〉(1, 0, 1).

Assembling things together,

TH
OX

(α) = α + 〈α, (1, 0, 1)〉(1, 0, 1)

which can be thought as reflection about the vector (1, 0, 1).
Thus we have TH

OX
(0, l, s) = (0, l, s) – s(1, 0, 1) = (–s, l, 0). Which is what we needed to finish

off the proof above.
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17. Outroduction

As is common practice in math texts, we now make the standard (and ridiculous)
assumption that a reader exists and is still paying attention. Yet more boldly, we assume
such superhuman reader craves for yet more derived enlightenment. To her or him, we have
the following suggestions.

Concerning Huybrechts’s book, there have been a few grave omissions: Orlov’s blow
up formula, Beilinson’s theorem for projective space, Mukai’s original result for abelian
varieties, the Bondal-Orlov-Bridgeland criterion for equivalences and the entirety of Chapter
11 (flips and flops).

Going beyond Huybrechts’s book, two topics have dominated the field in recent years
and deserve more attention: stability conditions and semi-orthogonal decompositions. For
a treatment of the former, there are excellent notes by Huybrechts (no surprises here) and a
forthcoming book by Bayer-Macrì. For semi-orthogonal decompositions (and the beautiful
framework of homological projective duality) there are a few sources. We mention Galkin’s
and Logvinenko’s notes (which can be found on their respective websites) and Kuznetsov’s
survey on rationality questions.

Happy deriving.

April 24, 2017

John Calabrese
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