This is a nice theorem to state:

"A variety is completely recovered by its category of coherent sheaves."

Let's be more precise:

<u>Theorem</u> (Gabriel) Let X,Y be two varieties, then X is isomorphic to Y if and only if the category Coh(X) is equivalent to Coh(Y).

This theorem has seen many extensions. The most general^{*} form works for any quasi-separated scheme [Gabriel, Rosenberg, Gabber/Brandenburg].

*If one is willing to think of Coh(X) together with its tensor product, i.e. if one considers the *monoidal* category (Coh(X), \otimes), then one has a corresponding "Tannakian-flavored" variant of the reconstruction theorem [Ballman, Lurie, Brandenburg]. This version needs much more information from Coh(X) but has the big advantage of working even for stacks (unlike the ordinary one).

The idea is to extract a scheme Z(A) out of an abelian category A, such that Z(Coh(X)) = X (by default, if A = B then Z(A) = Z(B)).

The original approach was to start by first producing a topological space $|\mathcal{A}|$, so that |Coh(X)| = |X| - the topological space underlying X.

The key fact is the bijection: {closed irreducible subsets of |X|} \leftrightarrow {Serre subcategories of Coh(X)} $Y \subset |X| \mapsto Coh_Y(X)$

where *Serre* means "closed under subobjects, quotients and extensions" and $Coh_{Y}(X)$ is the category of sheaves supported on Y.

The point is that Serre subcategories make sense in *any* abelian category.

With extra work, one produces the structure sheaf \mathcal{O}_X , thus recovering the whole scheme X.

But there should be another way to prove this theorem:

 $X = Hilb^{1}(X) = moduli space of point-looking sheaves.$

Nowadays we are all into moduli, so it would be nice if we could write:

"X is the moduli space of *points* of Coh(X)."

Indeed, this is possible. Here are some of the advantages:

- a new paper on the arXiv,
- works for algebraic spaces and not just schemes,
- works for twisted varieties where the twist comes from *any* class in $H^2(X, \mathcal{O}_X)$.

Main disadvantage: works at most for quasi-compact and separated spaces (it is very likely that this approach simply does not apply to the non-separated world).

So, what is a pointlike object of an abelian category? How do we build a moduli space of them?

Let's take a step back and review something we know well. There are at least two ways to present a scheme:

- $X = ringed space = topological space + sheaf of rings = (|X|, O_X)$
- $X = moduli \text{ space} = collection of maps S \rightarrow X$, with S affine scheme = the functor Hom(-,X).

As we like moduli spaces we prefer the second approach, by default.*

*Hilbert schemes illustrate this principle quite well. Hilb(X) is naturally a functor and for good reason. Hironaka gave an example of a non-projective threefold whose Hilbert scheme of points is not a scheme, but rather an algebraic space. Algebraic spaces sit in between schemes and stacks and they do *not* admit a description in terms of ringed spaces, so we are stuck with functors (or maybe topoi, but no one wants to work with those). The idea is to extract a moduli space Pt_{\emptyset} from an abelian category \emptyset , such that $Pt_{Coh(X)}=X$. How? One needs to define what a family of pointlike objects is.

Let's start with $\Re = Coh(X)$ and do some reverse engineering.

As $Pt_{Coh(X)}=X$, an S-family of pointlike objects in Coh(X) is nothing but a morphism S \rightarrow X.

A morphism is equivalent to its graph $\Gamma \subset S \times X$, which is a closed^{*} subscheme of $S \times X$.

In turn, this is equivalent to the structure sheaf \mathcal{O}_{Γ} .

A "family of points" is the structure sheaf a graph.

*Here is where separatedness of X separated creeps in .

So, $Pt_{Coh(X)}(S) = \{ \mathfrak{O}_{\Gamma}, \text{ for } \Gamma \text{ the graph of a morphism } S \longrightarrow X \}.$

Can "being a graph" be phrased categorically? Yes - diagram please.

 $S \leftarrow S \times X \rightarrow X$

Given a morphism $S \rightarrow X$, the key property is the bijection

 $\{\text{subschemes of } S\} \leftrightarrow \{\text{quotients of } \mathcal{O}_{\Gamma}\}$

given by $pr_{S^*}(-) \otimes \mathcal{O}_{\Gamma}$. Why?

Let's denote by gr:S \rightarrow S \times X the graph morphism corresponding to S \rightarrow X. The bijection follows once we notice that

 $\operatorname{pr}_{S} \circ \operatorname{gr} = \operatorname{id}_{S}, \quad \mathcal{O}_{\Gamma} = \operatorname{gr}_{*} \mathcal{O}_{S}, \quad \operatorname{gr}_{*}(-) = \operatorname{pr}_{S}^{*}(-) \otimes \mathcal{O}_{\Gamma}.$

Now is time for the general definition. A quasi-coherent sheaf F on $S \times X$ is a graph^{*} if and only if:

- pr_S*(-)⊗F induces a bijection between subschemes of S and quotients of F;
- 2. F is flat over S and of finite type;
- 3. for all $G \in Coh(X)$ we have $Hom(pr_X^*(G),F) \in Coh(S)$;
- 4. $M \rightarrow Hom(F, F \otimes pr_S^*M)$ is an isomorphism, for all $M \in Coh(S)$.

All these properties make sense in *any* abelian category. So, Pt_{e} is well defined and $Pt_{Coh(X)}=X$. Hence, we have reproved Gabriel's theorem.

*This definition is technical, but the main bit is property 1. To deal with non-noetherian spaces one needs to slightly modify 3.

Actually, I lied: an F satisfying 1-4 is only a graph up to a twist of a line bundle $L \in Pic(S)$.

 $Pt_{Coh(X)}$ is not X, but rather the trivial G_m -gerbe on X.

Any $\alpha \in H^2(X, G_m)$, defines a category Coh(X, α) of α -twisted sheaves.

It turns out that $Pt_{Coh(X,\alpha)} = \alpha$, i.e. the moduli of points of α -twisted sheaves is the gerbe corresponding to the twist α .

<u>Theorem</u>^{*} Let X,Y be two varieties and let α , β be two classes in H². Then Coh(X, α) is equivalent to Coh(Y, β) if and only if there exists an isomorphism g:X \rightarrow Y, such that g^{*} $\beta = \alpha$.

*This twisted reconstruction theorem was already studied by Perego, Canonaco-Stellari and Antieau.

Of course a question remains: if \mathfrak{A} is some other abelian category, what is $Pt_{\mathfrak{A}}$?

Anyway, that's all. This wasn't really a poster, but rather a bunch of slides next to each other (at least it had lots of colors).

If you are interested, the relevant paper is: Moduli Problems in Abelian Categories and the Reconstruction Theorem John Calabrese (Rice) Michael Groechenig (Imperial College).