
Groups also have representations

John Calabrese

Abstract. In the Fall of 2017 I taught out of Hall’s excellent book on Lie theory. Part I
was covered with great detail (with the exception of the BCH formula), Part II was more
rushed, and we had zero time left for Part III. In the last three lectures I decided to
summarize the main results of this last part. So here is a summary of that summary.

All mistakes appearing here are mine and mine only: you cannot have them.

1. Finite groups

Although not part of the book, let us briefly summarize some elements of the
representation theory of finite groups. So, let G be a finite group. We want to study
finite-dimensional complex representations.

Theorem 1.1 (Maschke). Representations are completely reducible.

Proposition 1.2 (Schur’s lemma). Let V, W be two irreps. Then HomG(V, W) is ei-
ther zero or isomorphic to C. In particular, any non-zero intertwiner V → W is an
isomorphism (of representations).

At the very least, what we would like next is a way to construct all irreps. For this
purpose, it is useful to introduce the group algebra.

1.1. Group algebra. Let C[G] be the set of functions φ : G→ C. This set becomes an
associative (unital) C-algebra by defining the convolution

(φ ∗ ψ)(x ) =
∑
y∈G

φ(x )ψ(y–1x ).

If G is not abelian, then C[G] is not commutative. As a vector space, C[G] ' C|G|.

Proposition 1.3. Mod(C[G]) is the same thing as Rep(G).

Also, irreducible representations correspond to what are called simple modules, i.e.
modules with no non-trivial submodules. Suppose M is such a module, i.e. a G-irrep.
Let 0 6= v ∈ M. There is a map C[G]→ M sending 1 7→ v . Since M is simple, this map
is surjective. So all irreducible representations may be obtained as quotients of C[G].

Now, C[G] itself may be viewed as a G-rep, called the regular representation. Maschke’s
therem tells us that C[G] = ⊕iWi , where i runs over a finite set and Wi is an irreducible
representation. So, let M be a random irrep. We have:

0 6= 0 HomG(C[G], M) = ⊕i HomG(Wi , M).

where the LHS is nonzero as we can always find a surjection C[G] � M. Schur’s lemma
now tells us there must be at least one i , such that Wi ' M. This means that:

All irreps show up as factors of the regular representation. As a conse-
quence, there are at most |G| distinct G-irreps.
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1.2. Characters. It would be nice to actually know the number of irreps. Turns out that
characters are the way to go. If (Π, V) is a finite-dimensional (complex) representation,
its character is the function

χΠ : G→ C

χΠ(g) = tr(Π(g))

Remark 1.4. There is a mild clash in terminology. Sometimes, by a character of a group
it is meant a group homomorphism G→ C∗. [Since G is finite, every element has finite
order and hence must be a root of unity. So characters in this latter sense are the same
as group homomomrphisms G → S1 = U(1).] Given a group hom X: G → C∗, we
obtain a one-dimensional representation G→ End(C) by declaring Π(g)(z ) = X(g)z .
Obviously, χΠ(g) = X(g) for all g . So characters in this latter sense are the same as
characters of one-dimensional representations.

Proposition 1.5. Let (Π, V), (Σ, W) be two representations. Then

• χΠ(e) = dim V
• χΠ⊕Σ = χΠ + χΣ
• χΠ∨ = χΠ
• χΠ⊗Σ = χΠ · χΣ
• χHom(V,W) = χΠχΣ

• χΠ(hgh–1) = χΠ(g)

The last condition says that characters are invariant under conjugation.

1.3. Class functions. Functions f : G→ C invariant under conjugation play a central
role, we call them class functions. They are the same thing as functions on G/G, where
G is acting on itself by conjugation. We write C[G/G] for the vector space of class
functions. We may define an inner product on C[G/G] as follows.

〈f , g〉 =
1

|G|
∑
x∈G

f (x )g(x ).

1.4. Projection operator. Any G-rep V has a subrepresentation

VG = {v ∈ V | gv = v ,∀g ∈ G}

called the subspace of invariants. If C denotes the trivial one-dimensional representation
of G, then VG = HomG(C, V).

Proposition 1.6. Let V be a G-rep. Let P: V→ V be the operator defined by

Pv =
1

|G|
∑
g∈G

g · v .

Then,

• P2 = P
• Im P = VG

• P|VG = idVG .

Using this, we deduce a key result.

Theorem 1.7. Let V, W be two representations. Then

〈χV,χW〉 = dim HomG(V, W).
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Proof. Let Γ denote the representation Hom(V, W).

〈χV,χW〉 =
1

|G|
∑
x∈G

χV(x )χW(x )

=
1

|G|
∑
x∈G

χV∨⊗W(x )

=
1

|G|
∑
x∈G

χHom(V,W)(x )

=
1

|G|
∑
x∈G

tr(Γ(x ))

= tr

(∑
x∈G

1

|G|
Γ(x )

)
= tr(P)

= dim Im P

= dim HomG(V, W).

�

Combining this, once again, with Maschke’s theorem and Schur’s lemma tells us that
characters of irreps form an orthonormal system in C[G/G]. In particular:

Two irreps are isomorphic if and only if they have the same character.

But even more is true!

Theorem 1.8. Let V1, . . . , Vk be all the distinct G-irreps, and let χi be the correspond-
ing characters. Then

• the χi are orthonormal:

〈χi ,χj 〉 = δij .

• χ1, . . . ,χk form a basis for C[G/G].

As a consequence, the number if G-irreps is equal to |G/G|, the number of conjugacy
classes of G.

Proof. We already know that χ1, . . . ,χk are orthonormal. So we need to show they span
the space of class functions. Suppose f : G → C is a class function, orthogonal to all
the characters. We want to show that f = 0. Let γ ∈ C[G] be defined as

γ =
∑
x∈G

f (x–1)x

Two things: γ ∈ Z(C[G]) belongs to the centre; γ = 0 if and only if f = 0. Now, γ = 0
if and only if the multiplication by γ map mγ : C[G]→ C[G] is zero.

Since γ is central, mγ is C[G]-linear. In particular, it preserves any submodule of
C[G]. As C[G] decomposes (as a module over itself) into irreps, we deduce that f = 0
if and only if for any irrep V the G-equivariant map

φ : V→ V

v 7→
∑
x∈G

f (x–1)g · v
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is zero. By Schur’s lemma, this map is given by multiplication by a scalar λ. Hence

(dim V)λ = trφ = |G|〈f ,χ〉

where χ is the character of V. But f is orthogonal to all characters of irreps, hence
λ = 0, hence f = 0. �

2. Lie groups

It turns out that many things may be generalized for compact groups. Even more
pleasantly, the results come together with the representation theory of semisimple Lie
algebras. Let now G be a connected Lie group.

Theorem 2.1. Let G be a connected Lie group. There exists a compact subgroup
K < G, maximal with respect to inclusion. Moreover, if K, K′ < G are maximal
compact subgroups, then K, K′ are conjugate. Finally, if K is a maximal compact
subgroup, then G is diffeomorphic to K×Rd .

Noncompact groups are hard, so let’s restrict to compact ones. Let us fix a compact,
connected Lie group K. We wish to study finite-dimensional complex representations.

Theorem 2.2 (Weyl’s unitary trick). Reps of K are completely reducible.

Proposition 2.3 (Schur’s lemma). If V, W are K-irreps, then HomK(V, W) is either
zero or isomorphic to C.

At this point, we would want an analogue of the group algebra, or at the very least
a nice space of class functions. Defining naively C[K] to be functions on K leads to
problems, as K is infinite. We could define it to be functions with compact support.
However, this would treat K as a discrete group, but we want to remember the topology
of K (for example if we wish to use Lie algebras later on).

2.1. Haar measure. What we need is a function space which remembers the topology of
K. The first thing which comes to mind is C (G) (or C∞(K)) the space of continuous
(or smooth) functions K → C. What was really neat in the finite group case was the
orthonormality of characters. So we need an inner product. Let dx be the Haar measure
on K. This is a left-invariant measure such that vol(K) = 1. To construct it, you pick
arbitrarily a top form on k, the Lie algebra of K, and then left translate it to obtain a
volume form on K. Since K is compact, it will have finite volume. We normalize by
dividing out by the volume, obtaining the Haar measure.

As usual, we may define an inner product as

〈f , g〉 =

∫
K
f (x )g(x )dx .

Since we now have a measure on a compact space, the reasonable thing to do would
be to look at L2(K). Indeed, the Peter-Weyl theorem proves (among other things) that
L2(K) splits off (as a K-representation) as a (completed) direct sum of irreps. Moreover,
just like for C[G], all irreps appear in this decomposition.

3. Real roots and weights

A torus is a Lie group T isomorphic (as a Lie group) to (S1)k . Crucial in the theory
of Lie algebras of compact groups is finding a torus T < K, maximal with respect to
inclusion.
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Example 3.1. In U(n) a maximal torus is given by diagonal matrices (in U(n)). Explic-
itly, the diagonal entries are of the form (eiθ1 , eiθ2 , . . . , eiθn–1 , e–i(θ1+···+θn–1))

Theorem 3.2. Let K be compact and connected.

• There exists T < K a torus, and maximal with respect to inclusion.
• Any two maximal tori T, T′ < K are conjugate.
• If x ∈ K, there exists a maximal torus T < K with x ∈ T.
• exp: k→ K is surjective
• x ∈ K is in the centre of K if and only if it belongs to all maximal tori in K.

3.1. Weyl group. So, let us fix K, its Lie algebra k, a maximal torus T ⊂ K, and the
corresponding subalgebra t ⊂ k. Since K is compact, we may fix an Ad-invariant inner
product on k.

Definition 3.3. The Weyl group of K is the group W = N(T)/T, where N(T) is the
normalizer of T in K, i.e.

N(T) = {x ∈ K | xTx–1 = T}

is the largest subgroup in which T is normal.

The Weyl group acts on t via the adjoint action.

3.2. Roots. When K is simply-connected, the complexification g = kC is semisimple.
The representation theory of g can then be studied using weights and roots. Recall that
h = tC is a Cartan subalgebra and that (using our inner product to identify g with g∨)
weights and roots live in i t.

When K is not simply-connected, g is not semisimple. However, k = k1 ⊕ z, with z the
centre and (k1)C semisimple. In this context, one can still speak of roots and weights.
For groups, the convention is to speak of real roots and weights, which live in t rather
than i t.

Definition 3.4. α ∈ t is a real root if there is a non-zero X ∈ g such that

[H, X] = i〈α, H〉X

for all H ∈ t.

The roots of K form a root system, with the exception that they won’t span t, but only
t1. Let us fix a base ∆ for the real roots. As usual, we define λ ∈ t to be algebraically
integral if

2
〈λ,α〉
α,α

∈ Z

for all real roots α; dominant if
〈λ,α〉 ≥ 0

for all α ∈ ∆. Using ∆, we can also define when one element is higher than another.
The new feature one needs to take into account is the notion of analytically integral

element. Let

Γ = {H ∈ t | exp(2πH) = e}

be the “kernel” of the exponential map for t.
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Definition 3.5. We say λ ∈ t is analytically integral if

〈λ, H〉 ∈ Z

for all H ∈ Γ.

If α is a real root, we define the corresponding real coroot to be

Hα = 2
α

〈α,α〉
.

Theorem 3.6. Let α be a real root. Then Hα ∈ Γ.
Moreover,

analytically integral implies algebraically integral.

I.e. if µ is an analytically integral element then µ is algebraically integral.
If K is simply-connected, then algebraically integral elements are also analytically

integral.

For example, for SO(3) the algebraically integral elements may be identified with
1
2Z, while the analytically integral elements with Z. While for SU(2) the analytic and
algebraic are the same.

3.3. Weights. Given a representation (Π, V) of K, with associated representation (π, V)
of g, we define λ ∈ t to be a real weight if there is 0 6= v ∈ V such that

(πH)v = i〈λ, H〉v
for all H ∈ t.

Just as for Lie algebras, the goal is to prove a theorem of the highest weight.

Theorem 3.7. Let K be a compact, connected Lie group, with maximal torus T and a
choice of a base ∆.

(1) Every irrep has a highest weight.
(2) Two irreps are isomorphic if and only if they have the same highest weight.
(3) The highest weight of an irrep is a dominant integral element.
(4) Given any dominant and analytically integral element µ. There exists an irrep

with highest weight µ.

Parts 1 and 3 follow as a K-irrep induces a g-irrep, and we use the theorem of the
highest weight for those. Parts 2 and 4, however, have a different flavor.

3.4. Characters again. We will show that Theorems 1.5, 1.7, 1.8 have analogues for
compact groups. This will actually allow us to deduce the theorem of the highest weight.

The character of a K-rep (Π, V) is defined to be

χΠ : K→ C

x 7→ tr(Π(x ))

and notice that if X ∈ k then

χπ(X) = tr(e(πX)) = χΠ(e(πX)).

Recall that characters are class functions, i.e. functions invariant under conjugation.
Indeed, if x , y ∈ K then

χΠ(xyx–1) = tr(Π(x )Π(y)Π(y)–1) = χΠ(y).

The space of (continuous) class functions will be operate as a deus ex machina.
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Theorem 3.8. The formulae from Theorem 1.5 hold verbatim for compact groups. If
(Π, V), (Σ, W) are two reps, then

〈χV,χW〉 =

∫
K

tr(Π(x )) tr(Σ(x ))dx = HomK(V, W).

In particular, if Π and Σ are K-irreps, then∫
K
χΠ(x )χΣ(x )dx =

{
1 if Π ' Σ

0 otherwise

The proof is actually exactly the same as for finite groups, as for any rep V we may
define the averaging operator P by

Pv =

∫
K

Π(x )vdx

as a V-valued (or Bochner, if you want to be fancy) integral.

3.5. Weyl character formula. So, given complete reducibility and Schur’s lemma, we
see that the character of an irrep is a complete invariant. Part (2) of Theorem 3.7 actually
follows from this, after the sledgehammer that is Weyl’s character formula.

Theorem 3.9 (Weyl’s character formula). Suppose (Π, V) is an irrep of K with highest
weight µ. We have

q(H)χΠ(eH) =
∑
w∈W

det(w) exp (i〈w · (µ+ δ), H〉)

where W is the Weyl group (with respect to our chosen maximal torus), δ is half the sum
of the positive roots, H ∈ t and q(H) is the Weyl denominator

q(H) =
∑
w∈W

det(w) exp (〈w · δ, H〉)

Since we are skipping (all) details, the explicit formula isn’t really the point. What
is to notice is that the expression for the character depends on the highest weight µ.
Therefore, if two irreps have the same highest weight, they have the same character,
which means they must be isomorphic.

3.6. Peter-Weyl. The true miracle is the analogue of Theorem 1.8.

Theorem 3.10 (Completeness of Characters). Let f be a continuous class function such
that ∫

K
f (x )χΠ(x )dx = 0

for all irreps Π. Then f ≡ 0.

This result is part of the jackhammer that is the Peter-Weyl theorem.
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3.7. Fourier theory. Let us say only a couple of words of how Peter-Weyl relates to
Fourier theory. Let K be a compact group and let K̂ be the set of irreducible characters
(i.e. characters of irreducible representations). Instead of looking directly at class
functions, Peter-Weyl proves something stronger (and then deduces the relationship
between class functions and characters as a consequence). Let L2(K) be the Hilbert
space of square-integrable functions f : K→ C, with respect to the Haar measure on K.
This space is a (unitary) K-representation of K, by declaring

(g · f )(x ) = f (g–1x ).

Peter-Weyl shows (among other things), that

L2(K) =
⊕̂
V∈K̂

VmV

i.e. the L2 space is the (completed) direct sum the all irreps V of K, each appearing with
multiplicity mV = dim V.

The way we should interpet the symbol W =
⊕̂

iWi is that any vector w ∈W may
be uniquely written as the sum of as series w =

∑
i wi with wi ∈Wi .

Let us specialize to the case K = S1. One shows that, since S1 is abelian, its irreps
are all 1-dimensional. Moreover, they (or, equivalently, their characters) are all of the

form θ 7→ einθ. So Ŝ1 = Z. [Since S1 is abelian (and locally compact), Ŝ1 is also a group,
called the Pontryagin dual.]

But L2(S1) is the same as periodic (of period 2π), complex-valued, square-integrable
functions on R. Fourier’s classic theorem tells us that, if f ∈ L2(S1) then

f (θ) =
∑
n∈Z

ane
inθ

where

an =
1

2π

∫ 2π

0
f (θ)e–inθdθ.

So, let Vn denote the irrep of S1 where Vn = C as a vector space and θ · z = einθz .
Fourier’s theorem is really telling us that

L2(S1) =
⊕̂
n∈Z

Vn

and remember that Z = Ŝ1.
Indeed, θ0 ∈ S1 acts on L2(S1) by taking f (θ) to f (θ – θ0). We may view the vector

space Vn as being spanned by e–inθ , so that S1 indeed acts correctly on it:

θ0 · (e–inθ) = e–in(θ–θ0) = einθ0e–inθ.

There are certainly uncountably many more things to say about this story, but we will
not comment on this any further.
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3.8. Highest weight again. A non-constructive proof of part (4) Theorem 3.7 may be
given as follows. Let µ be a dominant, analytically integral element. How do we show a
corresponding K-rep Vµ exists? One trick is to prove the following string of non-trivial
results.

Let µ be a dominant analytically integral element. Weyl’s character formula tells us at
least what the character of the rep we wish to construct should look like.

Proposition 3.11. There is a unique continuous function φµ : T→ C such that

q(H)φµ(eH) =
∑
w∈W

det(w)ei〈w ·(µ+δ),H〉

for all H ∈ t.

Proposition 3.12. Let f : T → C be continuous and invariant under the action of the
Weyl group on T. Then there exists a unique class function F: K→ C, with F|T = f .

Call now Φµ the extension of φµ to K.

Proposition 3.13. The collection {Φµ}µ where µ ranges among all dominant analyti-
cally integral elements is an orthonormal system of class functions.

With all this, part (4) of Theorem 3.7 actually becomes provable.

Proof. If V is a K-irrep with highest weight µ, Weyl’s character formula tells us that
Φµ = χV. Suppose there a dominant analytically integral element µ0 which does not
correspond to a K-irrep. The function Φµ0 still makes sense, and is orthogonal to Φµ

for all other µ. In particular, Φµ0 is orthogonal to χV for all K-irreps V. By Peter-Weyl,
Φµ0 = 0, which is a contradiction. �

4. Fundamental Groups

Let us summarize the results from the very last chapter of Hall. Using the long exact
sequence for a fibration, and the fact that πi (Sn) = 0 for i < n , one can deduce some
basic facts.

Theorem 4.1. We have SO(n)/SO(n – 1) = Sn–1, so π1(SO(n)) = Z/2Z for n ≥ 3.

Theorem 4.2. We have SU(n)/SU(n – 1) = S2n–1. So π1SU(n) = 1 for all n ≥ 2.
On the other hand, π1U(n) = Z for all n ≥ 1.

Theorem 4.3. For the compact symplectic group Sp(n) = Sp(n,C) ∩ U(2n), we have
Sp(n)/ Sp(n – 1) = S4n–1. We deduce that π1(Sp(n)) = 1 for all n ≥ 1.

Polar decomposition lets also say things about noncompact groups.

Theorem 4.4. We have π1(GL(n,C)) = π1(U(n)) = Z, for all n ≥ 1.
We have π1(SL(n,C)) = 1, for all n ≥ 2.
We have π1(SL(n,R)) = π1(SO(n)) = Z/2Z, for all n ≥ 2.
On the other hand, π1(SL(2,R)) = π1(SO(2)) = Z.

4.1. General results. Pick now a maximal torus T < K of our compact connected Lie
group.

Proposition 4.5. Any loop in K is homotopy to a loop in T.

Notice that a loop in T may define a nonzero element of π1(T) but be zero in π1(K).
Recall we define Γ < t to be the kernel of e2π·.
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Theorem 4.6. π1(T) is isomorphic to Γ via the map sending γ 7→ e2πγt with t ∈ [0, 1].

Recall we have R ⊂ t, the set of real roots.

Definition 4.7. The coroot lattice is the subset I ⊂ t consisting of Z-linear combinations
of the coroots Hα, with α ∈ R.

Theorem 4.8. For each γ ∈ Γ, the loop t 7→ e2πγt is nullhomotopic in K if and only if
γ ∈ I.

Corollary 4.9. π1(K) = Γ/I.
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