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joint with Michael Groechenig

is is really fun to state.

“A variety is completely recovered by its category of coherent sheaves.”

Let’s be a bit more precise about it.

T (Gabriel, Rosenberg, Gabber/Brandenburg) – Let X, Y be two quasi-separated
schemes, then

— qc(X) ≃ qc(Y)

if and only if

— X ≃ Y

(when X and Y are noetherian you can replace qcwith Coh).¹ Whenworking over a ground ring
C then qc is moreover a C-linear category and we can dress up the theorem by saying qc(X) as
a C-linear category recovers X as a C-scheme. ∗

ewhole project started out from this question: wouldn’t it be cool to prove this theorem
by realising X as a moduli space of “points” of Coh(X)?
Anyway, before answering this question let’s say some other stuff.

AC — For affine schemes proving the reconstruction theorem is actually in-
credibly straightforward. Given a category C there is the so-called centre

Z(C) = Nat(1C, 1C)

which is by definition the monoid of natural transformations of the identity functor. When
C happens to be additive (which is an intrinsic property of the category!) then Z(C) is a com-
mutative ring. For any ring R you can check that

Z(R−Mod) = Z(R)

the centre of its category of modules is actually the centre of the ring.
erefore, for an affine scheme X, it follows that

X = Spec Z(qc(X)).

How can we extend this to schemes?
¹By qc(X) I mean the category of quasi-coherent modules on X.
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S — OK, I hope you can forgive this mildly patronizing section. Well, what
is a scheme? ere are at least two ways to present a scheme.

1. X = Zariski topological space + sheaf of rings = ringed space (∣X∣,OX).

2. X = moduli space = collection of all maps S→ X, for S ∈ Aff

X = “{S→ X ∣ S ∈ Aff}′′

To be more pedantic,
— X = sets Hom(S, X) + for each T→ S, a function Hom(S, X)→Hom(T, X).

In other words X is the functor Hom(−, X).

In spite of looking tautological and useless, we like approach 2. better.² ings like Mg (the
moduli space of curves) orHilbX (the Hilbert scheme) and, why not, even Pn or Grassmanni-
ans are naturally moduli spaces.

T S — In any case, the Gabriel-Rosenberg way to prove the re-
construction theorem goes via 1. Let’s assume everything is noetherian just to be safe. First, a
definition.

1.1 D – Let A be an abelian category³. A Serre subcategory of A is a subcategory
S ⊂ A such that, for all short exact sequences

0→ A→ B→ C→ 0

then A, C ∈ S if and only if B ∈ S. ∗

With an abelian category A we associate a ringed space (∣A∣,OA). e idea is the following.
ere is a bijection

{irreducible closed subsets of ∣X∣}↔ {Serre subcategories of Coh(X)} .

eset on the right is defined purely in terms of the category theory of Coh(X), so it is invariant
under an equivalence Coh(X) ≃ Coh(Y). One direction is easy

(Y ⊂ ∣X∣)↦ CohYX = {F ∈ Coh(Y) ∣ supp F ⊂ Y} .

e hard part is going back.

²is might be called the Yoneda or Grothendieck functor-of-points view.
³is means it’s a category where we can take kernels, cokernels, sums and pretend we are in R−Mod without

feeling bad about it.
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E  T — A first question comes to mind: can the theorem be
strengthened? Notice that

qc(BZ/2Z) = Z/2Z − Vect = qc({●, ●}).

efirst is modules over the classifying stack of Z/2Z (which is just representations of Z/2Z),
the third is quasi-coherent sheaves over two points. Both categories are equal to that of su-
per (i.e. Z/2Z-graded) vector spaces. is shows that the theorem fails terribly for algebraic
stacks.⁴

Sitting in between schemes and stacks are algebraic spaces. Schemes are obtained by gluing
affine schemes along Zariski open immersions. If we allow the gluings to be along ètale maps,
we get algebraic spaces. is allows for more flexibility.

— If G is acting eely on X then the quotient X/G doesn’t always exist in the category of
schemes. It does, however, in the category of algebraic spaces! is result is not super
well-known, I guess it’s because the interesting group actions are rarely free and that’s
where you need stacks.

— Also,HilbX for X projective is projective butHironaka showed that there are cases where
X is smooth and proper butHilbX is not a scheme, just an algebraic space.

Algebraic spaces cannot be described as ringed spaces (ringed topoi maybe, but who wants to
work with those?) so a modular approach is really needed.

M  P — e idea is the following: given an abelian category Awe con-
struct a moduli-space (i.e. a functor) PA of “points” of A. is is a purely categorical construc-
tion, so that if A ≃ B then PA ≃ PB.

e main point is that Pqc(X) = X when X is a quasi-compact and separated algebraic space.

1.2 T (myself-Grochenig) – Let C be a ground ring. Let X, Y be quasi-compact and
separated algebraic spaces over C. en

— qc(X) ≃ qc(Y) as C-linear categories

if and only if

— X ≃ Y as spaces over C.

Moreover, if X or Y is flat over C, then

— AutC(qc(X)) ≃ AutC(X) ⋉Pic(X)

in other words all C-linear autoequivalences of qc(X) are of the form f∗(−)⊗ L for f an auto-
morphism of X over C and L ∈ Pic(X).⁵ ∗

⁴To make it work you have to consider (qc(X),⊗) as a tensor category (work of Balmer, Lurie, Brandenburg).
⁵It’s important to point out that Brandenburg was able to prove this result for schemes without any flatness

assumptions. Also, for smooth projective varieties this was known for a long time.
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While we are at it, we mention yet another generalization of this.

1.3 T (Perego, Canonaco-Stellari, Antieau) – Let X, Y be a quasi-separated schemes
over C and let α,β be two Brauer classes. en qc(X, α) ≃ qc(Y, β) if and only if X ≃ Y and β
pulls back to α. ∗

I lied a little bit earlier. e moduli of points Pqc(X) is not equal to X but it is equal to the
trivial gerbe X×BGm. In general, it turns out that ifα is any class in H2(X,O×X ) then Pqc(X,α) = α,
i.e. the gerbe corresponding to α.

1.4 T (myself-Groechenig) – Let X, Y be two quasi-compact and separated algebraic
spaces over C. Let α,β be two classes in H2(O×) (not necessarily coming from an⁶ Azumaya
algebra). en qc(X, α) ≃ qc(Y, β) if and only if X ≃ Y and β pulls back to α. ∗

S — e idea is that we want to recover X as a moduli space of points in qc(X).
What is X? It’s the datum of all maps S → X. How does this relate to qc(X)? Well, given a map
f∶ S → X we can take the structure sheaf of the graph OΓ, which is an element of qc(S × X).⁷
We should think of OΓ as a family of points of X parameterized by S. What are the properties
enjoyed by OΓ? Let’s write down a diagram.

..
..S × X ..X

..S ..

.

q

.p

— OΓ is flat over S

— the functor p∗(−)⊗OΓ induces a bijectionbetween closed subschemes of S andquotients
of OΓ

plus three other conditions we won’t focus on: OΓ is finitely generated, the functor p∗(−) ⊗
OΓ is fully-faithful and the functor RHom(− ⊗L OS,OΓ) sends compact objects to compact
objects.

When X is separated, a sheaf P ∈ qc(S × X) is the structure sheaf of a graph if and only if
it satisfies those abstract properties. Given an abelian category, we are ready to define our
functor.

1.5 D – Let A be a (Grothendieck) abelian category. We define a moduli functor
as follows. With each S = Spec R we associate PA(S) given by those Q ∈ A⊗ R such that

— Q is flat over R,

— Q the functor P⊗R(−) induces a bijection between closed subschemes of Swith quotients
of P

⁶Or possibly a derived one, in Antieau’s case.
⁷Here is where separatedness creeps in, to ensure OΓ is equivalent to f.
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plus the other properties. ∗

e base-changed category A ⊗ R is easy to define and comes with an action of R-Mod, in
the sense that for any module M and object P the tensor product P ⊗R M makes sense. In the
geometric case qc(X)⊗ R = qc(S × X) and P⊗R M = P⊗S×X p∗M.

S E — I’ll finish by saying something vague. e group H0(X,O×X ) clas-
sifies invertible functions. e group H1(X,O×X ) classifies invertible modules, i.e. line bundles.
Another way of saying this is that it classifies Gm-torsors. For H2(X,O×X ), we certainly have the
description in terms of BGm-torsors. But there’s also a linear description as well, similar to
that of vector bundles. We call a sheaf of abelian categories over X invertible if locally on opens
Ui it is isomorphic to qc(Ui). It turns out that H2 also classifies invertible sheaves of abelian
categories.

What about H3?
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