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Abstract. —Notes for a talk given at the topology working seminar, Rice 2017-03-03.

The goal is to use a theorem of Shende in knot theory as motivation to learn some sheaf theory.
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1. Statement of the theorem

Let us start by stating the theorem as a slogan (copied from the article’s abstract): knots can only

have Legendrian isotopic conormal tori if they themselves are isotopic or mirror images.

1.1. Symplectic. — If M is a manifold, a symplectic form ω is closed 2-form on M which is every-

where non-degenerate. InR2n
, with coordinates (x1, y1, . . . , xn, yn) the standard symplectic form

is

ω
std

= ∑
i
dxi ∧ dyi

Darboux’s theorem then tells us that symplectic manifolds have no local invariants, as (locally) they

all look the same. In other words, if (M,ω) is a symplectic manifold, then locally we may find a

coordinate patch U with coordinates (x1, y1, . . . , xn, yn) such that ω∣U = ∑i dxi ∧ dyi.
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Associated with any manifold M there is a symplectic manifold: namely its cotagent bundle

T
∗
M. Indeed, on T

∗
M there is a canonical 1-form θ called the Liouville form. Concretely, if

(x1, . . . , xn) are local coordinates onM and (x1, y1, . . . , xn, yn) are local coordinates on T∗M, then

θ = ∑
i
yidxi

and a symplectic form can be obtained by ω = dθ.
Clearly, if M and M

′
are diffeomorphic, then T

∗
M and T

∗
M
′
are symplectomorphic (i.e. dif-

feomorphic via a diffeomorphism preserving the symplectic form). I believe the converse question

is still open in general.

1.2. Contact. — IfM is amanifold of dimension 2n+1, a contact structure ξ is a sub-bundle ξ ⊂ TM

of rank 2n, subject to the following condition. Locally, ξ can be written as kerα for α a 1-form. We

require this 1-form to satisfy

α ∧ (dα)n ≠ 0.

This condition is the extreme opposite of ξ giving rise to a foliation. In R2n+1
, with coordinates

(x1, y1, . . . , xn, yn, z) there is also a standard contact structure, given by the contact 1-form

α
std

= dz +∑
i
yidxi

which we immediately notice is the Liouville form with the extra term dz. A contact Darboux

theorem also holds, stating that if (M, ξ) is a contact manifold then locally there are coordinates

(x1, y1, . . . , xn, yn, z) onM such that the contact 1-form becomes dz +∑i yidxi.

Let M now be any manifold of dimension n. The cotangent bundle T∗M provides us with

a symplectic manifold. This can be turned into a contact manifold by passing to the associated

sphere bundle. In general, let E be a vector bundle on M. Then the associated sphere bundle is SE

obtained as follows: take E, remove the zero section, quotient out by the scaling action ofR+, so

that SE = (E∖ 0E)/R+. The fibre of ES is a sphere of dimension r − 1 where r is the rank of E. If E
has a metric, we could alternatively describe SE as the sub-bundle of unit vectors.

We call the sphere bundle of T
∗
Mthe cosphere bundle ofM andwrite S

∗
M. One can check that

the Liouville form θ induces a contact structure on S
∗
M. Briefly, by refining standard coordinate

patches of T
∗
M, onemay divide by the last coordinate yn and have xn play the role of z inαstd. The

form just described won’t be a global form, but the induced contact structure will be well defined.

We should also say that a different way to get a contact manifold out of M would be to take the

projectivizationPT∗M, which is (T∗M ∖ 0
T
∗
M
)/R∗.

1.3. Conormal torus. — Let nowN ⊂Mbe a submanifold. Recall we have the normal sequence

0→ TN→ TM
∣N
→ T

N/M
→ 0

which is dual to the conormal sequence

0→ T
∗

N/M
→ T

∗
M
∣N
→ T

∗
N→ 0.

If (M, ξ) is contact, we say N is Legendrian if dimM = 1 + 2 dimN and TN ⊂ ξ∣N. So a knot

K ⊂ R3
is aLegendrian knot if it’s Legendrian with respect to the the standard contact structure on

R3
. However, we will actually be looking for Legendrians not inR3

but rather in S
∗R3 = R3 × S2.
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Once again, suppose N ⊂M is a submanifold. The sphere bundle associated with the conormal

bundle T
∗

N/M
is a submanifold of the cosphere bundle S

∗
M of M. Actually, more is true: just as

T
∗

N/M
⊂ T

∗
M is Lagrangian, ST

∗

N/M
⊂ S

∗
M is Legendrian.

Let’s specialize to the case where M = R3
and N = K is knot, thus diffeomorphic to S

1
. We call

TK, the sphere bundle of T
∗

K/R3 , the conormal torus of the knot K inR3
. Indeed, topologically it’s

just a torus. However,TK ⊂ S
∗R3

is Legendrian. We can now state the theorem.

Theorem 1.1 (Shende 2016). — Let K,K
′ ⊂ R3

be two knots. Suppose there is a Legendrian iso-

topy between conormal toriTK,TK
′ ⊂ S

∗R3
. Then K is isotopic to either K

′
or its mirror image.

2. Strategy

We now sketch Shendes’ strategy, but in reverse: from knot theory to sheaf theory.

2.1. Peripheral subgroups. — If K is a knot, the knot group is the fundamental group π1(R3 ∖K)
of the knot complement. Now, this group does not determine the knot up to isotopy (wikipedia

informs me that the square knot and the granny knot have same knot group but are not isotopic).

However, a theorem of Waldhausen says the knot group plus the extra data of its peripheral
subgroups is a complete knot invariant. To describe the peripheral subgroups we do the following.

Consider a tubular neighbourhood N of the knot. Its boundary T = ∂N is a torus, hence has

fundamental group Z × Z. For generators, we can pick a ‘longitude’ and a ‘meridian’. To do so,

we first pick a point p on the boundary of T. To choose a longitude, we choose a loop with linking
number zerowithK. The tangent vector at p at the start of the longitude fixes an element l ∈ R3

. To

choose a meridian, we wrap around the boundary torus T in the orthogonal direction. A tangent

vector to themeridian at p determines another vectorm ∈ R3
. We also have a third vector n at p, the

outer normal to the boundary. We specify orientations of longitudes and meridians by requiring

(m, l,n) to have the same orientation asR3
. I stole the picture below fromwikipedia (where amuch

better explanation of peripheral subgroup is given).

In conclusion,Waldhausen tells us that if we exhibit an isomorphismπ1(R3∖K) ≃ π1(R3∖K′)
which preserves the peripheral subgroups then K and K

′
are isotopic.
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2.2. Group rings. — The next step is to linearize this fact. If G is a group, we can associate the

group ring Z[G]. Concretely, this can be defined as being spanned by symbols eg for each g ∈ G

and where egeh = egh. Any element is of the form x = ∑g∈G xgeg where xg ∈ Z and xg = 0 for all

but finitely many g. We have

x + y = ∑
g∈G

(xg + yg)eg

xy = ∑
g∈G

( ∑
h1h2=g

xh1xh2)eg

One would hope that G ≃ G
′
as groups if and only if Z[G] ≃ Z[G′] as rings. However, this

is not true even for finite groups (a counterexample was constructed by Hertwick). On the other

hand, it’s a conjecture of Higman that this is true when G is torsion free. He also observed that if

G is left-orderable then Z[G] does recover G. Left orderable means there’s an order ≤ on G, such

that if a ≤ b then ga ≤ ga. Thankfully, a theorem of Howie implies precisely this: knot groups are

left orderable. Assembling all together we see that knowing Z[π(R3 ∖ K)], plus the data of the
peripheral subgroups is enough to determine K up to isotopy.

2.3. Categories. — Now we take this to the categorical level. Instead of defining each notion one

by one, let us use everything to get to the end of the proof first. We will explain some of the words

appearing here later. Let M be a manifold. To M, we can attach a category Sh(M) of sheaves of
abelian groups. Inside of it, there is a category Loc(M) of local systems. The category Loc(M),
plus some extra data (the fibre functor), determines the group ringZ[π1(M)]. This is a version of
the celebrated Tannakian reconstruction theorem.

To link (pun intended) this back to our theorem, we need the ‘sheaf quantization theorem’.

Theorem 2.1 (Guillermou-Kashiwara-Schapira). — SupposeΛ,Λ′ ⊂ S
∗
Mare two Legendrians in

the cosphere bundle of M. A compactly supported contact isotopy on S
∗
M which takes Λ to Λ′

induces an equivalence ConΛ(M) ≃ ConΛ′(M).
Here ConΛ(M) is the constructible derived category of sheaves onMwith singular support con-

tained inΛ.

Clearly, wewant to apply this to the case of the conormal torusTK of a knot. Supposewehave an

Legendrian isotopy betweenTK andT′
K
, where recallTK ⊂ S

∗R3
. ByGKS, there is an equivalence

φ∶ConTK
(R3) → ConT

K
′
(R3). Themissing link is provided by Shende, who shows that the GKS

equivalence actually restricts to an equivalence between Loc(R3∖K) ≃ Loc(R3∖K′). With some

extra work, he also shows that the peripheral subgroups are preserved, up to orientation. That is

why in the end he must allow K
′
to be replaced by its mirror image.

3. Sheaves

OK, so what is a sheaf? It turns out that we’ve all known plenty of sheaves since the beginning

the time.
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3.1. Basics. — Let M be a manifold. If U ⊂ M is open, we may writeOM(U) for the set of func-
tions f ∶U → R which are smooth. If V ⊂ U, we can restrict f to obtain a function f ∣V∶V → R.
Most importantly, OM satisfies gluing: if {Ui}i is an open cover of U and fi ∈ OM(Ui) are local
functions such that fi∣Uij = fj ∣Uji for all i, j, there is a unique f ∈ OM(U) such that f ∣Ui = fi for
all i. Here Uij = Ui ∩Uj .

In general, a sheaf F onM consists of two pieces of data:

– an abelian group F(U) for each open subset U
– a restriction map F(U) → F(V), sending f to f ∣V, for each inclusion V ⊂ U.

This datamust satisfy some obvious compatibilities (e.g. ifW ⊂ V ⊂ U, then (f ∣U)∣W = f ∣W) and

gluing, as was the case forOM. Elements of F(U) are called the sections of F on U. Sheaves form a

category Sh(M).
If p ∈M, and F ∈ Sh(M)we can form the fibre (or, more properly, stalk) Fp. This is defined by

Fp = {(f , U)∣f ∈ F(U)}/ ∼

where (f , U) ∼ (g, V) if there exists W ⊂ U ∩ V f ∣W = g∣W. We should think of Fp as germs of
sections at p. More formally, we have defined a functor Sh(M) → Mod(Z)which takes F to Fp.

3.2. Local systems. — We’ve seen earlier that a special role is played by local systems, so let’s define

those. OnM, there is a special sheaf called the constant sheaf ZM defined by

ZM(U) = {f ∶U→ Z ∣ f continuous }

in other wordsZM(U) is the set of locally constant functions f ∶U→ Z (becauseZ is discrete).

More generally, if A is an abelian group, we write AM for the constant sheaf with fibre A. By

definition, AM(U) is the set of locally constant functions f ∶U → A. Notice that the fibre (AM)p
is indeed naturally isomorphic to A.

If F ∈ Sh(M) and U ⊂M is open, we define the restriction F∣U to be F but viewed as a sheaf on

U.

Definition 3.1. — A sheaf F ∈ Sh(M) is called a local system if there is an open cover {Ui}i and an
abelian group A, such that the restriction F∣Ui is isomorphic to the constant sheaf AUi . We write

Loc(M) ⊂ Sh(M) for the subcategory of local systems.

A local system gives rise to amonodromy representation. Let F be a local system. Pick a basepoint

p ∈Mand fix an isomorphismFp ≃ A. Letγ∶ [0, 1] →Mbe a loop based at p. Pick now a trivializing

cover of connected opens {Ui}i for F. Since we are only interested on what happens along γ, we
can extract a finite collection U1, . . . , Un. Suppose we can choose these in such a way that there is a
subdivision of [0, 1] in subintervals [ai, ai+1] and each [ai, ai+1] ⊂ Ui+1.

So, we start with [a0, a1] = [0, a1]. Wemay trivialize F∣U1 ≃ A. On [a1, a2]wemay also trivialize

F∣U2 ≃ A. Suppose the intersection U1 ∩U2 is connected. In passing from A → F∣U1 → F∣U12 →
F∣U2 → Awe obtain an isomorphism γ12∶A → A, which of course needn’t a priori be the identity.

Iterating the procedure, we obtain an isomorphism γ∶A → A, by γ = γn−1n ○ ⋯ ○ γ23 ○ γ12. With

some work, one checks that this map A → A is independente of the homotopy class of A. Hence,

we just defined a representation ofπ1(M) onA! In other words, aZ[π1(M)]-module. To go in the

other direction, one proceeds using the so-called Borel construction. It turns out the two categories
are equivalent. The Tannakian theorem alluded to earlier is the fact that the actual ring Z[π(M)]
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can be recovered by Loc(M) together with the functor Loc(M) → Mod(Z) given by F↦ Fp (the
‘fibre’ functor).

3.3. Constructible. — Slightlymore general than local system, are constructible sheaves. Essentially,
a sheaf F is constructible if there is a stratification of our space such that F restricted to each stratum

is locally constant. In the case we care about, K ⊂ R3
, a sheaf F ∈ Sh(R3) is constructible if F∣R3∖K

is a local system and F∣K is also a local system (although we did not define what the restriction to a

closed subset is).

The category Con(R3), called the constructible derived category, is then defined to be chain com-

plexes of sheaves

F
●∶⋯ → F

k−1 → F
k+1 → F

k+1 →

up to quasi-isomorphisms and such that each homology sheaf H
k(F●) ∈ Sh(R3) is constructible.

If F is a sheaf, or more generally an element of Con(M), we define its support supp(F) to be the
set p such that Fp ≠ 0. This is a subset of M. Notice that if F ∈ Loc(M), then supp(F) =M.

However, in the subject of microlocal analysis, a more refined support is defined. The singular
support ss(F) ⊂ T

∗
M(ormicrosupport) of F as the subset of p ∈Mand co-directions v ∈ T∗pMsuch

that Fp ≠ 0 and F ‘does not propagate’ towards v. The precise definition is a little convoluted. We

will content ourselves with pointing out that if F ∈ Loc(M), then ss(F) is the zero section of T∗M,

as F propagates everywhere.

In general, ss(F) is conical, in the sense that if (p, v) belongs to it then so does (p, av) for any
a ∈ R+. Hence, we can view ss(F) as defining a subset of the cosphere bundle S∗M. For good F,

ss(F) is Lagrangian inT∗M(and Legendrian in S
∗
M). Thus, it makes sense to define a subcategory

ConΛ(M) ⊂ ConΛ(M) of constructible (complexes of) sheaves, whose singular support is a subset

ofΛ.

4. Going back

Let us sketch once again Shende’s argument. SupposeTK,TK
′ , which are Legendrians in S

∗R3

are Legendrian isotopic. ByGKS, there is an equivalence ConTK
(R3) ≃ ConT

K
′
(R3). Pick a point

p, far away from either knot. By examining the effect of this functor in this special case, Shende

shows that actually Loc(R3∖K) ≃ Loc(R3∖K′), in amanner compatible with taking the fibre at

p. Hence, by Tannaka, we obtain an isomorphismZ[π1(R3 ∖K)] ≃ Z[π1(R3 ∖K′)]. Since these
groups are left orderable, it follows that π1(R3 ∖ K) ≃ π1(R3 ∖ K

′). Once again, by examining

closely the GKS functor, one shows that actually the peripheral subgroups are also preserved (up to

some orientations). Hence, byWaldhausen, K and K
′
are isotopic (or mirror images).

Now, let’s go study some more sheaf theory because it’s awesome.

March 2, 2017

John Calabrese
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