whatsaVermaModule?

John Calabrese

Abstract. In Fall 2017 I taught a course on Lie theory. I wrote notes on Verma modules. These are said notes. All mistakes here are mine and mine only: you cannot have them.

How do you cook up representations of a Lie algebra \mathfrak{g} ? One way is using Verma modules.

1. Tensor Products

Let V be a vector space. The *tensor algebra* is $TV = \bigoplus_{k\geq 0} V^{\otimes k}$. Notice that $V^{\otimes 0} = \mathbf{C}$. TV is an associative (unital) algebra. It's also the "biggest" possible algebra you can cook up from V, in the sense that it is free on dim V generators. Concretely, we have a bijection

$$Ass(TV, B) = Vect(V, B)$$

where B is any other associative (unital¹) algebra. So, this means that to specify an algebra map $TV \rightarrow B$ it suffices to give a linear map $V \rightarrow B$. In other words, T: Vect $\rightarrow Ass$ is "left adjoint" to the forgetful functor $Ass \rightarrow Vect$ which forgets multiplication (i.e. takes an algebra and views it as a plain vector space).

The tensor algebra is the mother of many constructions. It can be used for a lot of fun stuff. For example, what if we need a *commutative* algebra built out of V? Well, we take TV and impose commutativity. Let $I \subset TV$ be the (bilateral) ideal generated by elements

$$v\otimes w-w\otimes v$$

for all $v, w \in V$. The quotient TV/I is precisely the *symmetric algebra* SV, which is a commutative algebra. It satisfies the universal property

$$CAlg(SV, B) = Hom(V, B)$$

where now B is a commutative algebra. So, S: Vect \rightarrow CAlg is once again left adjoint to the forgetful functor CAlg \rightarrow Vect.

What if you need a Grasmann algebra? Take J to be the ideal generated by elements

 $v\otimes v$

for all $v \in V$. This is the *exterior algebra* ΛV , which is universal among all algebras B such that $b^2 = 0$ for any $b \in B$.

If q is a quadratic form on V, we can form the *Clifford algebra* Cl(V). This is defined by taking the the ideal K generated by elements

$$v \otimes v - q(v)$$
.

Date: November 28, 2017.

¹I'll stop saying unital now.

Notice that these relations are not homogeneous (with respect to the grading on TV given by word-length), so that Cl(V) is not Z-graded (as opposed to all examples before) but only Z/2Z-graded (i.e. you only remember the parity of a tensor). Clifford algebras can be used to construct the double cover of SO(n), $Spin_n$. For this, see for example Sepanski's book.

2. Enveloping algebra

If $V = \mathfrak{g}$ is a Lie algebra, we can feed that into our woodchipper that is TV. Consider the ideal H of TV generated by elements

$$x\otimes y-y\otimes x-[x,y]$$

for all $x, y \in \mathfrak{g}$. The quotient $U(\mathfrak{g}) = TV/H$ is called the *universal enveloping algebra* of \mathfrak{g} . It is an associative algebra, satisfying the universal property

$$Ass(U(\mathfrak{g}), B) = Lie(\mathfrak{g}, B)$$

where B is an associative algebra. In other words, there is a functor $Ass \rightarrow Lie$ by taking an associative algebra and viewing it as a Lie algebra (using the commutator bracket), and U is the left adjoint. Once again, the relations aren't homogeneous so that $U(\mathfrak{g})$ is not graded. It is *filtered*, however, and it turns out that the associated graded is Sg, the symmetric algebra.

Before we move on, let us fix some notation. There is a natural map : $\mathfrak{g} \to T\mathfrak{g} \to U(\mathfrak{g})$, which turns out is an injection. So we identify elements $x \in \mathfrak{g}$ with elements of $U(\mathfrak{g})$. If $\alpha, \beta \in U(\mathfrak{g})$ we will write $\alpha\beta$ for their product in $U(\mathfrak{g})$, instead of $\alpha \otimes \beta$.

Remark 2.1. A silly but important observation is the following. A g-representation is nothing but a Lie algebra map $\mathfrak{g} \to \operatorname{End}(V)$. By the universal property, this is the same as a map $U(\mathfrak{g}) \to \operatorname{End}(V)$ of associative algebras. Such a map is the same as a $U(\mathfrak{g})$ -module structure on V. Hence

$$\operatorname{Rep}(\mathfrak{g}) = \operatorname{Mod}(\operatorname{U}(\mathfrak{g})).$$

So, any module we can cook up for $\mathrm{U}(\mathfrak{g})$ will automatically provide us with a representation of $\mathfrak{g}.$

3. Verma modules

What's the goal? Let \mathfrak{g} be semi-simple now. Let us also fix a base Δ for later, so that we may speak of positive and negative roots \mathbb{R}^{\pm} . Recall that, as a vector space, we have

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in \mathrm{R}^+}\mathfrak{g}_lpha\oplus igoplus_{lpha\in \mathrm{R}^-}\mathfrak{g}_lpha$$

For any weight $\mu \in \mathfrak{h}^{\vee}$, we are trying to find a highest weight cyclic representation π_{μ} of \mathfrak{g} with highest weight μ . This means there should be a weight vector v_0 such that

- $(\pi_{\mu}(\mathbf{H}))v_0 = \mu(\mathbf{H})v_0$, for all $\mathbf{H} \in \mathfrak{h}$ [as we want v_0 to be a weight vector]
- $(\pi_{\mu}X)v_0 = 0$, for all $X \in \mathfrak{g}_{\alpha}$ with $\alpha \in \mathbb{R}^+$ [as we want v_0 to have highest weight]
- We want the whole vector space to be spanned by iterated applications of the π_μ(Y) operators to v₀, for Y ∈ g_α with α ∈ R⁻ [as we want v₀ to be a cyclic vector]

So one thing we could do is just impose these relations on $U(\mathfrak{g})$. But let's give a slightly approach. Essentially by construction, \mathfrak{h} is a subalgebra of \mathfrak{g} . Notice that also

$$\mathfrak{n}^{\pm} = \bigoplus_{\alpha \in \mathrm{R}^{\pm}} \mathfrak{g}_{\alpha}$$

defines two subalgebras of g. Finally, we let $b = h \oplus n^+$ and call it a *Borel* subalgebra.

Let F_{μ} be a one-dimensional vector space generated by a vector v_0 . We define a b-representation by declaring

- $\pi(\mathbf{H})v_0 = \mu(\mathbf{H})v_0$ for all $\mathbf{H} \in \mathfrak{h}$
- $\pi(\mathbf{X})v_0 = 0$ for all $\mathbf{X} \in \mathfrak{n}^+$.

In other words, F_{μ} is a U(b)-module where H is acting by $\mu(H)$ and X acts by zero. Now, the inclusion $b \to \mathfrak{g}$ induces a map of algebra U(b) $\to U(\mathfrak{g})$. We then define the *Verma module* W_{μ} to be

$$W_{\mu} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} F_{\mu}$$

which, by construction, is a left $U(\mathfrak{g})$ -module. In other words, we have constructed our representation of \mathfrak{g} .

Definition 3.1. A g-rep V is highest weight cyclic with highest weight $\mu \in \mathfrak{h}$ if there is $0 \neq v \in V$ such that

- $(\pi H)v = \langle \mu, H \rangle v$, for all $H \in \mathfrak{h}$
- $(\pi X)v = 0$, for all $X \in \mathfrak{g}_{\alpha}$, with $\alpha \in \mathbb{R}^+$
- the smallest invariant subspace containing v is V

Theorem 3.2. The Verma module is a highest weight cyclic representation with highest weight μ (and μ -weight vector $1 \otimes v_0$).

Moreover, W_{μ} satisfies the following universal property: any highest weight cyclic g-representation V with highest weight μ is a quotient $W_{\mu} \rightarrow V$ of the Verma module.

The hard thing to check here is the fact that W_{μ} is indeed cyclic. Here enters a big sledgehammer.

Theorem 3.3 (PBW). Let \mathfrak{g} be a Lie algebra with ordered basis x_1, \ldots, x_k . Then the elements $x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$, as the $n_i \ge 0$ vary, form a basis (called a PBW-basis) of $U(\mathfrak{g})$.

Suppose $\alpha_1, \ldots, \alpha_N$ are an ordering of the positive roots R^+ , with corresponding root vectors $X_{\alpha_i}, Y_{\alpha_i}$, with X positive and Y negative. Let H_1, \ldots, H_r the elements of our fixed base Δ . The collection $Y_1, \ldots, Y_N, H_1, \ldots, H_r, X_1, \ldots, X_N$ form a basis for \mathfrak{g} .

The corresponding PBW-basis give us a recipe to work out a basis for the Verma module W_{μ} , since we know exactly how the H_i and the X_i act on v_0 . Indeed, one sees that W_{μ} is isomorphic to $U(\mathfrak{n}^-)$, as vector spaces.

4. Quotients

This is great so far. But how do we construct our coveted *finite-dimensional* irrep with highest weight μ ? [which was promised to us by the theorem of the highest weight] Once again, notice that a g-representation is the same as a U(g)-module. Moreover, if V is a g-representation, then an invariant subspace is the same as a submodule! So, an irrep is a representation with no non-trivial invariant subspaces. So we need to find a U(g)-module with no non-trivial submodules.

whatsaVermaModule?

It turns out that W_{μ} has a unique *maximal* submodule. Its quotient, which we call V_{μ} , is therefore an irreducible representation of \mathfrak{g} . Finally, one shows that when μ is dominant and integral, the quotient V_{μ} is actually finite-dimensional. Loosely speaking, the reason is the following. As a vector space, W_{μ} is the direct sum of its weight spaces. Each weight space is finite-dimensional, but there might be infinitely many of them. Passing to the quotient V_{μ} , the same is true. Moreover, the set of weights for V_{μ} is invariant under the action of the Weyl group. If μ is dominant integral, then any weight must also be integral. In particular, if μ' is a weight, then $w\mu' \leq \mu$ for all $w \in W$. By integrality, there are only finitely many possibilities for μ' .

5. sl₂

Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. The universal enveloping algebra $U = U(\mathfrak{g})$ is the associative algebra on generators x, y, h subject to the relations given (as a two-sided ideal) by

$$hx - xh = 2x$$
$$hy - yh = -2y$$
$$xy - yx = h.$$

Let $\mu \in \mathbf{C}$. The Verma module W_{μ} is then the quotient of U by the left-ideal generated by

$$\begin{aligned} x &= 0\\ h &= \mu \end{aligned}$$

where by μ we mean $\mu \cdot 1$.

Proposition 5.1. As a vector space, W_{μ} is isomorphic to $\mathbf{C}[y]$.

Indeed, \mathfrak{sl}_2 is generated by the three matrices X, Y, H. Its Cartan \mathfrak{h} is the span of H, while \mathfrak{n}^+ is the span X, and \mathfrak{n}^- is the span of Y. So $W_{\mu} = \mathbb{C}[y] = U(\mathfrak{n}^-)$ as vector spaces.

To conform to perhaps more standard notation, we write $v_0 = 1$, $v_1 = y$, $v_2 = y^2$, and so on. Let us now see what W_{μ} looks like as a g-module.

The easiest to compute is the action of y. We have

$$y \cdot v_j = v_{j+1}$$

which follows from the fact that $yy^{j} = y^{j+1}$. Next, let us have a look at the action of h.

$$h \cdot v_0 = h \cdot 1 = h = \mu = \mu v_0$$

so, as expected, v_0 is a weight vector with weight μ . Without being careful, one is lead to conclude the following:

$$\begin{aligned} h \cdot v_1 &= h \cdot y \\ &= \mu \cdot y \\ &= \mu y \\ &= \mu v_1 \end{aligned}$$

so that y_1 would also be a μ -weight vector. But this is *WRONG!* The problem lies in the second equality: substituting h for μ is not allowed. The reason is that h is playing the

role of a scalar, and scalars live in $U(\mathfrak{g})$, where the relation $h = \mu$ does not exist. The correct string of equalities is as follows:

$$h \cdot v_1 = h \cdot y$$

= $hy \cdot 1$
= $hy \cdot v_0$
= $(yh - 2y) \cdot v_0$
= $y \cdot h - 2y$
= $y \cdot \mu - 2y$
= $(\mu - 2)y$
= $(\mu - 2)v_1$

so v_1 is a weight vector with weight $\mu - 2$. After the sixth equal sign, the substitution $h = \mu$ is allowed, as h is now seen as an element of W_{μ} , where that relation exists. Let's do one more:

$$\begin{aligned} \cdot v_2 &= h \cdot y^2 \\ &= hy \cdot v_1 \\ &= (yh - 2y) \cdot v_1 \\ &= y \cdot (h \cdot v_1) - 2y \cdot v_1 \\ &= y \cdot (\mu - 2)v_1 - 2v_2 \\ &= (\mu - 2)y \cdot v_1 - 2v_2 \\ &= (\mu - 2 - 2)v_2 \end{aligned}$$

so that v_2 is a weight vector with weight μ – 4. In general,

h

$$h \cdot v_j = (\mu - 2j)v_j.$$

By a similar analysis, we have

$$x \cdot v_j = j(\mu - (j-1))v_{j-1}$$

where we set $v_{-1} = 0$.

Now, if $\mu \notin \mathbb{Z}_{\geq 0}$ one sees that W_{μ} is irreducible. On the other hand, if $\mu \in \mathbb{Z}_{\geq 0}$ then the subspace

$$S = Span\{v_{\mu+1}, v_{\mu+2}, v_{\mu+3}, \cdots\}$$

is actually a maximal invariant subspace. Why is that? Well, the action of y just pushes vectors forward, the action of h is diagonal, but what about x?

$$x \cdot v_{\mu+1} = (\mu+1)(\mu - (\mu+1-1))v_{\mu} = 0.$$

Thus, S is invariant (and also maximally so), and $V_{\mu} = W_{\mu}/S$ is the desired (finite dimensional!) irrep of \mathfrak{sl}_2 with highest weight μ .