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John Calabrese

Abstract. In Fall 2017 I taught a course on Lie theory. I wrote notes on Verma modules.
These are said notes. All mistakes here are mine and mine only: you cannot have them.

How do you cook up representations of a Lie algebra g? One way is using Verma
modules.

1. Tensor Products

Let V be a vector space. The tensor algebra is TV =
⊕

k≥0 V⊗k . Notice that

V⊗0 = C. TV is an associative (unital) algebra. It’s also the “biggest” possible algebra
you can cook up from V, in the sense that it is free on dim V generators. Concretely, we
have a bijection

Ass(TV, B) = Vect(V, B)

where B is any other associative (unital1) algebra. So, this means that to specify an algebra
map TV→ B it suffices to give a linear map V→ B. In other words, T: Vect→ Ass is
“left adjoint” to the forgetful functor Ass→ Vect which forgets multiplication (i.e. takes
an algebra and views it as a plain vector space).

The tensor algebra is the mother of many constructions. It can be used for a lot of fun
stuff. For example, what if we need a commutative algebra built out of V? Well, we take
TV and impose commutativity. Let I ⊂ TV be the (bilateral) ideal generated by elements

v ⊗ w – w ⊗ v

for all v ,w ∈ V. The quotient TV/I is precisely the symmetric algebra SV, which is a
commutative algebra. It satisfies the universal property

CAlg(SV, B) = Hom(V, B)

where now B is a commutative algebra. So, S: Vect→ CAlg is once again left adjoint
to the forgetful functor CAlg→ Vect.

What if you need a Grasmann algebra? Take J to be the ideal generated by elements

v ⊗ v

for all v ∈ V. This is the exterior algebra ΛV, which is universal among all algebras B
such that b2 = 0 for any b ∈ B.

If q is a quadratic form on V, we can form the Clifford algebra Cl(V). This is defined
by taking the the ideal K generated by elements

v ⊗ v – q(v).
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Notice that these relations are not homogeneous (with respect to the grading on TV
given by word-length), so that Cl(V) is not Z-graded (as opposed to all examples before)
but only Z/2Z-graded (i.e. you only remember the parity of a tensor). Clifford algebras
can be used to construct the double cover of SO(n), Spinn . For this, see for example
Sepanski’s book.

2. Enveloping algebra

If V = g is a Lie algebra, we can feed that into our woodchipper that is TV. Consider
the ideal H of TV generated by elements

x ⊗ y – y ⊗ x – [x , y ]

for all x , y ∈ g. The quotient U(g) = TV/H is called the universal enveloping algebra of
g. It is an associative algebra, satisfying the universal property

Ass(U(g), B) = Lie(g, B)

where B is an associative algebra. In other words, there is a functor Ass→ Lie by taking
an associative algebra and viewing it as a Lie algebra (using the commutator bracket),
and U is the left adjoint. Once again, the relations aren’t homogeneous so that U(g) is
not graded. It is filtered, however, and it turns out that the associated graded is Sg, the
symmetric algebra.

Before we move on, let us fix some notation. There is a natural map : g→ Tg→ U(g),
which turns out is an injection. So we identify elements x ∈ g with elements of U(g). If
α,β ∈ U(g) we will write αβ for their product in U(g), instead of α⊗ β.

Remark 2.1. A silly but important observation is the following. A g-representation is
nothing but a Lie algebra map g → End(V). By the universal property, this is the
same as a map U(g) → End(V) of associative algebras. Such a map is the same as a
U(g)-module structure on V. Hence

Rep(g) = Mod(U(g)).

So, any module we can cook up for U(g) will automatically provide us with a
representation of g.

3. Verma modules

What’s the goal? Let g be semi-simple now. Let us also fix a base ∆ for later, so that
we may speak of positive and negative roots R±. Recall that, as a vector space, we have

g = h⊕
⊕

α∈R+

gα ⊕
⊕
α∈R–

gα

For any weight µ ∈ h∨, we are trying to find a highest weight cyclic representation πµ of
g with highest weight µ. This means there should be a weight vector v0 such that

• (πµ(H))v0 = µ(H)v0, for all H ∈ h [as we want v0 to be a weight vector]
• (πµX)v0 = 0, for all X ∈ gα with α ∈ R+ [as we want v0 to have highest weight]
• We want the whole vector space to be spanned by iterated applications of the
πµ(Y) operators to v0, for Y ∈ gα with α ∈ R– [as we want v0 to be a cyclic
vector]
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So one thing we could do is just impose these relations on U(g). But let’s give a
slightly approach. Essentially by construction, h is a subalgebra of g. Notice that also

n± =
⊕

α∈R±

gα

defines two subalgebras of g. Finally, we let b = h⊕ n+ and call it a Borel subalgebra.
Let Fµ be a one-dimensional vector space generated by a vector v0. We define a

b-representation by declaring

• π(H)v0 = µ(H)v0 for all H ∈ h
• π(X)v0 = 0 for all X ∈ n+.

In other words, Fµ is a U(b)-module where H is acting by µ(H) and X acts by zero.
Now, the inclusion b→ g induces a map of algebra U(b)→ U(g). We then define the
Verma module Wµ to be

Wµ = U(g)⊗U(b) Fµ

which, by construction, is a left U(g)-module. In other words, we have constructed our
representation of g.

Definition 3.1. A g-rep V is highest weight cyclic with highest weight µ ∈ h if there is
0 6= v ∈ V such that

• (πH)v = 〈µ, H〉v , for all H ∈ h
• (πX)v = 0, for all X ∈ gα, with α ∈ R+

• the smallest invariant subspace containing v is V

Theorem 3.2. The Verma module is a highest weight cyclic representation with highest
weight µ (and µ-weight vector 1⊗ v0).

Moreover, Wµ satisfies the following universal property: any highest weight cyclic
g-representation V with highest weight µ is a quotient Wµ � V of the Verma module.

The hard thing to check here is the fact that Wµ is indeed cyclic. Here enters a big
sledgehammer.

Theorem 3.3 (PBW). Let g be a Lie algebra with ordered basis x1, . . . , xk . Then the
elements xn1

1 xn2
2 · · · x

nk
k , as the ni ≥ 0 vary, form a basis (called a PBW-basis) of U(g).

Suppose α1, . . . ,αN are an ordering of the positive roots R+, with corresponding
root vectors Xαi , Yαi , with X positive and Y negative. Let H1, . . . , Hr the elements of
our fixed base ∆. The collection Y1, . . . , YN, H1, . . . , Hr , X1, . . . , XN form a basis for
g.

The corresponding PBW-basis give us a recipe to work out a basis for the Verma
module Wµ, since we know exactly how the Hi and the Xi act on v0. Indeed, one sees
that Wµ is isomorphic to U(n–), as vector spaces.

4. Quotients

This is great so far. But how do we construct our coveted finite-dimensional irrep
with highest weight µ? [which was promised to us by the theorem of the highest weight]
Once again, notice that a g-representation is the same as a U(g)-module. Moreover, if
V is a g-representation, then an invariant subspace is the same as a submodule! So, an
irrep is a representation with no non-trivial invariant subspaces. So we need to find a
U(g)-module with no non-trivial submodules.



whatsaVermaModule? 4

It turns out that Wµ has a unique maximal submodule. Its quotient, which we call Vµ,
is therefore an irreducible representation of g. Finally, one shows that when µ is dominant
and integral, the quotient Vµ is actually finite-dimensional. Loosely speaking, the reason
is the following. As a vector space, Wµ is the direct sum of its weight spaces. Each
weight space is finite-dimensional, but there might be infinitely many of them. Passing
to the quotient Vµ, the same is true. Moreover, the set of weights for Vµ is invariant
under the action of the Weyl group. If µ is dominant integral, then any weight must also
be integral. In particular, if µ′ is a weight, then wµ′ ≤ µ for all w ∈W. By integrality,
there are only finitely many possibilities for µ′.

5. sl2

Let g = sl(2,C). The universal enveloping algebra U = U(g) is the associative
algebra on generators x , y , h subject to the relations given (as a two-sided ideal) by

hx – xh = 2x

hy – yh = –2y

xy – yx = h.

Let µ ∈ C. The Verma module Wµ is then the quotient of U by the left-ideal generated
by

x = 0

h = µ

where by µ we mean µ · 1.

Proposition 5.1. As a vector space, Wµ is isomorphic to C[y ].

Indeed, sl2 is generated by the three matrices X, Y, H. Its Cartan h is the span of
H, while n+ is the span X, and n– is the span of Y. So Wµ = C[y ] = U(n–) as vector
spaces.

To conform to perhaps more standard notation, we write v0 = 1, v1 = y , v2 = y2,
and so on. Let us now see what Wµ looks like as a g-module.

The easiest to compute is the action of y . We have

y · vj = vj+1

which follows from the fact that yy j = y j+1. Next, let us have a look at the action of h .

h · v0 = h · 1 = h = µ = µv0

so, as expected, v0 is a weight vector with weight µ. Without being careful, one is lead to
conclude the following:

h · v1 = h · y
= µ · y
= µy

= µv1

so that y1 would also be a µ-weight vector. But this is WRONG! The problem lies in the
second equality: substituting h for µ is not allowed. The reason is that h is playing the
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role of a scalar, and scalars live in U(g), where the relation h = µ does not exist. The
correct string of equalities is as follows:

h · v1 = h · y
= hy · 1
= hy · v0
= (yh – 2y) · v0
= y · h – 2y

= y · µ – 2y

= (µ – 2)y

= (µ – 2)v1

so v1 is a weight vector with weight µ – 2. After the sixth equal sign, the substitution
h = µ is allowed, as h is now seen as an element of Wµ, where that relation exists. Let’s
do one more:

h · v2 = h · y2

= hy · v1
= (yh – 2y) · v1
= y · (h · v1) – 2y · v1
= y · (µ – 2)v1 – 2v2

= (µ – 2)y · v1 – 2v2

= (µ – 2 – 2)v2

so that v2 is a weight vector with weight µ – 4. In general,

h · vj = (µ – 2j )vj .

By a similar analysis, we have

x · vj = j (µ – (j – 1))vj–1

where we set v–1 = 0.
Now, if µ /∈ Z≥0 one sees that Wµ is irreducible. On the other hand, if µ ∈ Z≥0

then the subspace

S = Span{vµ+1, vµ+2, vµ+3, · · · }
is actually a maximal invariant subspace. Why is that? Well, the action of y just pushes
vectors forward, the action of h is diagonal, but what about x ?

x · vµ+1 = (µ+ 1)(µ – (µ+ 1 – 1))vµ = 0.

Thus, S is invariant (and also maximally so), and Vµ = Wµ/S is the desired (finite
dimensional!) irrep of sl2 with highest weight µ.
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