whatsaVermaModule?

John Calabrese

> Abstract. In Fall 2017 I taught a course on Lie theory. I wrote notes on Verma modules. These are said notes. All mistakes here are mine and mine only: you cannot have them.

How do you cook up representations of a Lie algebra \mathfrak{g} ? One way is using Verma modules.

1. Tensor Products

Let V be a vector space. The tensor algebra is $\mathrm{TV}=\bigoplus_{k \geq 0} \mathrm{~V}^{\otimes k}$. Notice that $\mathrm{V}^{\otimes 0}=\mathbf{C}$. TV is an associative (unital) algebra. It's also the "biggest" possible algebra you can cook up from V, in the sense that it is free on $\operatorname{dim} V$ generators. Concretely, we have a bijection

$$
\operatorname{Ass}(T V, B)=\operatorname{Vect}(V, B)
$$

where B is any other associative (unita ${ }^{1}$ algebra. So, this means that to specify an algebra map TV \rightarrow B it suffices to give a linear map $\mathrm{V} \rightarrow \mathrm{B}$. In other words, T : Vect \rightarrow Ass is "left adjoint" to the forgetful functor Ass \rightarrow Vect which forgets multiplication (i.e. takes an algebra and views it as a plain vector space).

The tensor algebra is the mother of many constructions. It can be used for a lot of fun stuff. For example, what if we need a commutative algebra built out of V? Well, we take TV and impose commutativity. Let I \subset TV be the (bilateral) ideal generated by elements

$$
v \otimes w-w \otimes v
$$

for all $v, w \in \mathrm{~V}$. The quotient TV / I is precisely the symmetric algebra SV , which is a commutative algebra. It satisfies the universal property

$$
\mathrm{CAlg}(\mathrm{SV}, \mathrm{~B})=\operatorname{Hom}(\mathrm{V}, \mathrm{~B})
$$

where now B is a commutative algebra. So, $\mathrm{S}:$ Vect $\rightarrow \mathrm{CAlg}$ is once again left adjoint to the forgetful functor CAlg \rightarrow Vect.

What if you need a Grasmann algebra? Take J to be the ideal generated by elements

$$
v \otimes v
$$

for all $v \in \mathrm{~V}$. This is the exterior algebra $\Lambda \mathrm{V}$, which is universal among all algebras B such that $b^{2}=0$ for any $b \in \mathrm{~B}$.

If q is a quadratic form on V , we can form the Clifford algebra $\mathrm{Cl}(\mathrm{V})$. This is defined by taking the the ideal K generated by elements

$$
v \otimes v-q(v) .
$$

[^0]Notice that these relations are not homogeneous (with respect to the grading on TV given by word-length), so that $\mathrm{Cl}(\mathrm{V})$ is not \mathbf{Z}-graded (as opposed to all examples before) but only $\mathbf{Z} / 2 \mathbf{Z}$-graded (i.e. you only remember the parity of a tensor). Clifford algebras can be used to construct the double cover of $\operatorname{SO}(n), \operatorname{Spin}_{n}$. For this, see for example Sepanski's book.

2. Enveloping algebra

If $V=\mathfrak{g}$ is a Lie algebra, we can feed that into our woodchipper that is TV. Consider the ideal H of TV generated by elements

$$
x \otimes y-y \otimes x-[x, y]
$$

for all $x, y \in \mathfrak{g}$. The quotient $\mathrm{U}(\mathfrak{g})=\mathrm{TV} / \mathrm{H}$ is called the universal enveloping algebra of \mathfrak{g}. It is an associative algebra, satisfying the universal property

$$
\operatorname{Ass}(\mathrm{U}(\mathfrak{g}), \mathrm{B})=\operatorname{Lie}(\mathfrak{g}, \mathrm{B})
$$

where B is an associative algebra. In other words, there is a functor Ass \rightarrow Lie by taking an associative algebra and viewing it as a Lie algebra (using the commutator bracket), and U is the left adjoint. Once again, the relations aren't homogeneous so that $U(\mathfrak{g})$ is not graded. It is filtered, however, and it turns out that the associated graded is Sg , the symmetric algebra.

Before we move on, let us fix some notation. There is a natural map : $\mathfrak{g} \rightarrow \mathrm{Tg} \rightarrow \mathrm{U}(\mathfrak{g})$, which turns out is an injection. So we identify elements $x \in \mathfrak{g}$ with elements of $\mathrm{U}(\mathfrak{g})$. If $\alpha, \beta \in \mathrm{U}(\mathfrak{g})$ we will write $\alpha \beta$ for their product in $\mathrm{U}(\mathfrak{g})$, instead of $\alpha \otimes \beta$.

Remark 2.1. A silly but important observation is the following. A \mathfrak{g}-representation is nothing but a Lie algebra map $\mathfrak{g} \rightarrow \operatorname{End}(\mathrm{V})$. By the universal property, this is the same as a map $U(\mathfrak{g}) \rightarrow \operatorname{End}(V)$ of associative algebras. Such a map is the same as a $U(\mathfrak{g})$-module structure on V. Hence

$$
\operatorname{Rep}(\mathfrak{g})=\operatorname{Mod}(U(\mathfrak{g}))
$$

So, any module we can cook up for $\mathrm{U}(\mathfrak{g})$ will automatically provide us with a representation of \mathfrak{g}.

3. Verma modules

What's the goal? Let \mathfrak{g} be semi-simple now. Let us also fix a base Δ for later, so that we may speak of positive and negative roots $\mathrm{R}^{ \pm}$. Recall that, as a vector space, we have

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \mathrm{R}^{+}} \mathfrak{g}_{\alpha} \oplus \bigoplus_{\alpha \in \mathrm{R}^{-}} \mathfrak{g}_{\alpha}
$$

For any weight $\mu \in \mathfrak{h}^{\vee}$, we are trying to find a highest weight cyclic representation π_{μ} of \mathfrak{g} with highest weight μ. This means there should be a weight vector v_{0} such that

- $\left(\pi_{\mu}(\mathrm{H})\right) v_{0}=\mu(\mathrm{H}) v_{0}$, for all $\mathrm{H} \in \mathfrak{h}$ [as we want v_{0} to be a weight vector]
- $\left(\pi_{\mu} \mathrm{X}\right) v_{0}=0$, for all $\mathrm{X} \in \mathfrak{g}_{\alpha}$ with $\alpha \in \mathrm{R}^{+}$[as we want v_{0} to have highest weight]
- We want the whole vector space to be spanned by iterated applications of the $\pi_{\mu}(\mathrm{Y})$ operators to v_{0}, for $\mathrm{Y} \in g_{\alpha}$ with $\alpha \in \mathrm{R}^{-}$[as we want v_{0} to be a cyclic vector]

So one thing we could do is just impose these relations on $U(\mathfrak{g})$. But let's give a slightly approach. Essentially by construction, \mathfrak{h} is a subalgebra of \mathfrak{g}. Notice that also

$$
\mathfrak{n}^{ \pm}=\bigoplus_{\alpha \in \mathrm{R}^{ \pm}} \mathfrak{g}_{\alpha}
$$

defines two subalgebras of \mathfrak{g}. Finally, we let $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}^{+}$and call it a Borel subalgebra.
Let F_{μ} be a one-dimensional vector space generated by a vector v_{0}. We define a b-representation by declaring

- $\pi(\mathrm{H}) v_{0}=\mu(\mathrm{H}) v_{0}$ for all $\mathrm{H} \in \mathfrak{h}$
- $\pi(\mathrm{X}) v_{0}=0$ for all $\mathrm{X} \in \mathfrak{n}^{+}$.

In other words, F_{μ} is a $\mathrm{U}(\mathrm{b})$-module where H is acting by $\mu(\mathrm{H})$ and X acts by zero. Now, the inclusion $b \rightarrow \mathfrak{g}$ induces a map of algebra $\mathrm{U}(\mathrm{b}) \rightarrow \mathrm{U}(\mathfrak{g})$. We then define the Verma module W_{μ} to be

$$
\mathrm{W}_{\mu}=\mathrm{U}(\mathfrak{g}) \otimes_{\mathrm{U}(\mathrm{~b})} \mathrm{F}_{\mu}
$$

which, by construction, is a left $U(\mathfrak{g})$-module. In other words, we have constructed our representation of \mathfrak{g}.

Definition 3.1. A \mathfrak{g}-rep V is highest weight cyclic with highest weight $\mu \in \mathfrak{h}$ if there is $0 \neq v \in \mathrm{~V}$ such that

- $(\pi \mathrm{H}) v=\langle\mu, \mathrm{H}\rangle v$, for all $\mathrm{H} \in \mathfrak{h}$
- $(\pi \mathrm{X}) v=0$, for all $\mathrm{X} \in \mathfrak{g}_{\alpha}$, with $\alpha \in \mathrm{R}^{+}$
- the smallest invariant subspace containing v is V

Theorem 3.2. The Verma module is a highest weight cyclic representation with highest weight μ (and μ-weight vector $1 \otimes v_{0}$).

Moreover, W_{μ} satisfies the following universal property: any highest weight cyclic \mathfrak{g}-representation V with highest weight μ is a quotient $\mathrm{W}_{\mu} \rightarrow \mathrm{V}$ of the Verma module.

The hard thing to check here is the fact that W_{μ} is indeed cyclic. Here enters a big sledgehammer.

Theorem 3.3 (PBW). Let \mathfrak{g} be a Lie algebra with ordered basis x_{1}, \ldots, x_{k}. Then the elements $x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$, as the $n_{i} \geq 0$ vary, form a basis (called a PBW-basis) of $\mathrm{U}(\mathfrak{g})$.

Suppose $\alpha_{1}, \ldots, \alpha_{\mathrm{N}}$ are an ordering of the positive roots R^{+}, with corresponding root vectors $\mathrm{X}_{\alpha_{i}}, \mathrm{Y}_{\alpha_{i}}$, with X positive and Y negative. Let $\mathrm{H}_{1}, \ldots, \mathrm{H}_{r}$ the elements of our fixed base Δ. The collection $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{N}}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{r}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$ form a basis for \mathfrak{g}.

The corresponding PBW-basis give us a recipe to work out a basis for the Verma module W_{μ}, since we know exactly how the H_{i} and the X_{i} act on v_{0}. Indeed, one sees that W_{μ} is isomorphic to $U\left(\mathfrak{n}^{-}\right)$, as vector spaces.

4. Quotients

This is great so far. But how do we construct our coveted finite-dimensional irrep with highest weight μ ? [which was promised to us by the theorem of the highest weight] Once again, notice that a \mathfrak{g}-representation is the same as a $U(\mathfrak{g})$-module. Moreover, if V is a \mathfrak{g}-representation, then an invariant subspace is the same as a submodule! So, an irrep is a representation with no non-trivial invariant subspaces. So we need to find a $\mathrm{U}(\mathfrak{g})$-module with no non-trivial submodules.

It turns out that W_{μ} has a unique maximal submodule. Its quotient, which we call V_{μ}, is therefore an irreducible representation of \mathfrak{g}. Finally, one shows that when μ is dominant and integral, the quotient V_{μ} is actually finite-dimensional. Loosely speaking, the reason is the following. As a vector space, W_{μ} is the direct sum of its weight spaces. Each weight space is finite-dimensional, but there might be infinitely many of them. Passing to the quotient V_{μ}, the same is true. Moreover, the set of weights for V_{μ} is invariant under the action of the Weyl group. If μ is dominant integral, then any weight must also be integral. In particular, if μ^{\prime} is a weight, then $w \mu^{\prime} \leq \mu$ for all $w \in \mathrm{~W}$. By integrality, there are only finitely many possibilities for μ^{\prime}.

$$
\text { 5. } \mathfrak{S l}_{2}
$$

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbf{C})$. The universal enveloping algebra $\mathrm{U}=\mathrm{U}(\mathfrak{g})$ is the associative algebra on generators x, y, h subject to the relations given (as a two-sided ideal) by

$$
\begin{array}{r}
h x-x h=2 x \\
h y-y h=-2 y \\
x y-y x=h .
\end{array}
$$

Let $\mu \in \mathbf{C}$. The Verma module W_{μ} is then the quotient of U by the left-ideal generated by

$$
\begin{aligned}
& x=0 \\
& h=\mu
\end{aligned}
$$

where by μ we mean $\mu \cdot 1$.
Proposition 5.1. As a vector space, W_{μ} is isomorphic to $\mathbf{C}[y]$.
Indeed, $\mathfrak{s l}_{2}$ is generated by the three matrices X, Y, H. Its Cartan \mathfrak{h} is the span of H, while \mathfrak{n}^{+}is the span X, and \mathfrak{n}^{-}is the span of Y. So $W_{\mu}=\mathbf{C}[y]=U\left(\mathfrak{n}^{-}\right)$as vector spaces.

To conform to perhaps more standard notation, we write $v_{0}=1, v_{1}=y, v_{2}=y^{2}$, and so on. Let us now see what W_{μ} looks like as a \mathfrak{g}-module.

The easiest to compute is the action of y. We have

$$
y \cdot v_{j}=v_{j+1}
$$

which follows from the fact that $y y^{j}=y^{j+1}$. Next, let us have a look at the action of h.

$$
h \cdot v_{0}=h \cdot 1=h=\mu=\mu v_{0}
$$

so, as expected, v_{0} is a weight vector with weight μ. Without being careful, one is lead to conclude the following:

$$
\begin{aligned}
h \cdot v_{1} & =h \cdot y \\
& =\mu \cdot y \\
& =\mu y \\
& =\mu v_{1}
\end{aligned}
$$

so that y_{1} would also be a μ-weight vector. But this is $W R O N G$! The problem lies in the second equality: substituting h for μ is not allowed. The reason is that h is playing the
role of a scalar, and scalars live in $\mathrm{U}(\mathfrak{g})$, where the relation $h=\mu$ does not exist. The correct string of equalities is as follows:

$$
\begin{aligned}
h \cdot v_{1} & =h \cdot y \\
& =h y \cdot 1 \\
& =h y \cdot v_{0} \\
& =(y h-2 y) \cdot v_{0} \\
& =y \cdot h-2 y \\
& =y \cdot \mu-2 y \\
& =(\mu-2) y \\
& =(\mu-2) v_{1}
\end{aligned}
$$

so v_{1} is a weight vector with weight $\mu-2$. After the sixth equal sign, the substitution $h=\mu$ is allowed, as h is now seen as an element of W_{μ}, where that relation exists. Let's do one more:

$$
\begin{aligned}
h \cdot v_{2} & =h \cdot y^{2} \\
& =h y \cdot v_{1} \\
& =(y h-2 y) \cdot v_{1} \\
& =y \cdot\left(h \cdot v_{1}\right)-2 y \cdot v_{1} \\
& =y \cdot(\mu-2) v_{1}-2 v_{2} \\
& =(\mu-2) y \cdot v_{1}-2 v_{2} \\
& =(\mu-2-2) v_{2}
\end{aligned}
$$

so that v_{2} is a weight vector with weight $\mu-4$. In general,

$$
h \cdot v_{j}=(\mu-2 j) v_{j} .
$$

By a similar analysis, we have

$$
x \cdot v_{j}=j(\mu-(j-1)) v_{j-1}
$$

where we set $v_{-1}=0$.
Now, if $\mu \notin \mathbf{Z}_{\geq 0}$ one sees that W_{μ} is irreducible. On the other hand, if $\mu \in \mathbf{Z}_{\geq 0}$ then the subspace

$$
\mathrm{S}=\operatorname{Span}\left\{v_{\mu+1}, v_{\mu+2}, v_{\mu+3}, \cdots\right\}
$$

is actually a maximal invariant subspace. Why is that? Well, the action of y just pushes vectors forward, the action of h is diagonal, but what about x ?

$$
x \cdot v_{\mu+1}=(\mu+1)(\mu-(\mu+1-1)) v_{\mu}=0 .
$$

Thus, S is invariant (and also maximally so), and $\mathrm{V}_{\mu}=\mathrm{W}_{\mu} / \mathrm{S}$ is the desired (finite dimensional!) irrep of $\mathfrak{s l}_{2}$ with highest weight μ.

[^0]: Date: November 28, 2017.
 ${ }^{1}$ 'll stop saying unital now.

